1. If y varies directely as x, and $y=8$ when $x=2$, find

(i). y in terms of x

Solution:

Given that y varies directly as x,
Therefore $y \propto x$ i.e. $y=k x$ \qquad (i), where k is constant of variation

Putting $y=8 \& x=2$ in eq.
$8=2 k$
$k=\frac{8}{2}$
$k=4$
Putting in eq (i) $k=4$
$y=4 x$
(ii). y when $x=5$

Solution:

$y \propto x$ i.e. $y=k x$ \qquad (i), where k is constant of variation

Put $x=5, k=4$ in eq(i)
$y=(4)(5)$
$y=20$
(iii). x when $y=28$

Solution:

$y \propto x$ i.e. $y=k x$ \qquad (i), where k is constant of variation

Put $y=28, k=4$
$28=(4)(x)$
$x=\frac{28}{4}$
$x=7$
2. If $y \propto x$, and $y=7$ when $x=3$ find
(i). y in terms of x

Solution:

Given that y varies directly as x
$y \propto x$ i.e. $y=k x$ \qquad (i), where k is constant of variation

Putting $y=7$ and $x=3$ in eq(i)
$7=(k)(3)$
$k=\frac{7}{3}$
Putting $k=\frac{7}{3}$ in eq(i)
$y=\frac{7}{3} x$
(ii). x when $y=35$ and y when $x=18$

Solution:

x When $y=35$
Given that y varies directly as x
$y \propto x$ i.e. $y=k x$ \qquad (i), where k is constant of variation

Putting $y=35 \& k=\frac{7}{3}$ in eq(i)
$35=\left(\frac{7}{3}\right)(x)$
$x=\frac{(35)(3)}{7}$
$x=15$
y When $x=18$
$y \propto x$ i.e. $y=k x$ \qquad (i), where k is constant of variation

Putting $x=18 \& k=\frac{7}{3}$
$y=\left(\frac{7}{3}\right)$
$y=42$
3. If $R \propto T$ and $R=5$ when $T=8$, find the equation connecting R and T. Also find R when $T=64 \& T$ when $R=20$.

Solution:

Given that R varies directly as T
$R \propto$ Ti.e. $R=k T$ \qquad (i), where k is constant of variation

Putting $R=5 \& T=8$ in eq(i)
$5=(k)(8)$
$k=\frac{5}{8}$
R when $T=64$
Putting $T=64 \& k=\frac{5}{8}$ in eq(i)
$R=\left(\frac{5}{8}\right)(64)$
$R=40$
Twhen $\boldsymbol{R}=\mathbf{2 0}$.
Putting $R=20 \& k=\frac{5}{8}$ in eq(i)
$20=\left(\frac{5}{8}\right)(T)$
$T=\frac{(20)(8)}{5}$
$T=32$
4. $R \propto T^{2}$ and $R=8$ when $T=3$, find R when $T=6$.

Solution:

Given that R varies directly as T^{2}

Therefore, $R \propto T^{2}$ i. $e R=k T^{2}$ \qquad (i), where k is constant of variation

Putting $R=8 \& T=3$ in eq(i)
$8=(k)(3)$
$k=\frac{8}{3}$
R when $T=6$
Putting $k=\frac{8}{3}$ in eq(i)
$R=\left(\frac{8}{3}\right) T^{2}$
R when $T=6$
Putting $T=6 \& k=\frac{8}{3}$ in eq(i)
$R=\left(\frac{8}{3}\right)(6)^{2}$
$R=\left(\frac{8}{3}\right)(36)$
$R=32$
5. If $V \propto R^{3}$ and $V=5$ when $R=3$ find R when $V=625$.

Solution:

Given that V varies directly as R^{3}
Therefore, $V \propto R^{3}$
i.e. $V=k R^{3}$ \qquad (i), where k is constant of variation

Putting $V=5 \& R=3$ in eq(i)
$5=(k)(3)^{3}$
$5=27 k$
$k=\frac{5}{27}$

R when $V=625$
Putting $V=625 \& k=\frac{5}{27}$ in eq(i)
$625=\left(\frac{5}{27}\right)(R)^{3}$
$R^{3}=\frac{(625)(27)}{5}$
$R^{3}=(125)(27)$
$R^{3}=(5)^{3}(3)^{3}$
Taking cube root on both sides,
$\sqrt[3]{R^{3}}=\sqrt[3]{(5)^{3}(3)^{3}}$
$R=(5)(3)$
$R=15$
6. If w varies directly as u^{3} and $w=81$ when $u=3$, find w when $u=5$.

Solution:

Given that w varies directly as u^{3}
Therefore, $w \propto u^{3}$
i.e. $w=k u^{3}$ \qquad (i), where k is constant of variation

Putting $w=8 \& u=3$ in eq(i)
$81=(k)(3)^{3}$
$81=27 k$
$k=\frac{81}{27}$
$k=3$
w when $u=5$
Putting $u=5 \& k=3$ in eq(i)
$w=(3)(5)^{3}$
$w=(3)(125)$
$w=375$
7. If y varies inversly as x and $y=7$ when $x=2$, find y when $x=126$.

Solution:

Given that y varies inversly as x
Therefore, $y \propto \frac{1}{x}$
i.e. $y=\frac{k}{x}$ \qquad (i), where k is constant of variation

Putting $y=7 \& x=2$ in eq(i)
$7=\frac{k}{2}$
$k=(7)(2)$
$k=14$
y when $x=126$
Putting $x=126 \& k=14$ in eq(i)
$y=\frac{14}{126}$
$y=\frac{1}{9}$
8. If $y \propto \frac{1}{x} \& y=4$ when $x=3$, find x when $y=24$.

Solution:

Given that $y \propto \frac{1}{x}$
Therefore, $y=\frac{k}{x} \quad$ (i), where k is constant of variation
Putting $y=4 \& x=3$ in eq(i)
$4=\frac{k}{3}$
$(4)(3)=k$
$k=12$
x when $y=24$
Putting $y=24 \& k=12$ in eq(i)
$24=\frac{12}{x}$
$x=\frac{12}{24}$
$x=\frac{1}{2}$
9. If $w \propto \frac{1}{z} \& w=5$ when $z=7$, find w when $z=\frac{175}{4}$.

Solution:

Given that $w \propto \frac{1}{z}$
Therefore, $w=\frac{k}{z}$ \qquad (i), where k is constant of variation

Putting $w=5 \& z=7$ in eq(i)
$5=\frac{k}{7}$
$(5)(7)=k$
$k=35$
w when $z=\frac{175}{4}$
Putting $Z=\frac{175}{4} \& k=35$ in eq(i)
$w=\left(\frac{35}{\frac{175}{4}}\right)$
$w=\frac{(35)(4)}{175}$
$w=\frac{4}{5}$
10. $A \propto \frac{1}{r^{2}} \& A=2$ when $r=3$, find r when $A=72$.

Solution:

Given that $A \propto \frac{1}{r^{2}}$
Therefore, $A=\frac{k}{r^{2}}$ \qquad (i), where k is constant of variation

Putting $A=2 \& r=3$ in eq(i)
$2=\frac{k}{3^{2}}$
$2=\frac{k}{9}$
(2) $(9)=k$
$k=18$
r when $A=72$
Putting $A=72 \& k=18$ in eq(i)
$72=\frac{18}{r^{2}}$
$r^{2}=\frac{18}{72}$
$r^{2}=\frac{1}{4}$
$r^{2}=\left(\frac{1}{2}\right)^{2}$
Taking square root on both sides
$\sqrt{r^{2}}=\sqrt{\left(\frac{1}{2}\right)^{2}}$
$r= \pm \frac{1}{2}$
11. $a \propto \frac{1}{b^{2}} \& a=3$ when $b=4$, find a when $b=8$.

Solution:
Given that $a \propto \frac{1}{b^{2}}$
Therefore, $a=\frac{k}{b^{2}}$ \qquad (i), where k is constant of variation

Putting $a=3 \& b=4$ in eq(i)
$3=\frac{k}{4^{2}}$
$3=\frac{k}{16}$
(3)(16) $=k$
$k=48$
a when $b=8$
Putting $b=8 \& k=48$
$a=\frac{48}{(8)^{2}}$
$a=\frac{48}{64}$
$a=\frac{3}{4}$
12. $V \propto \frac{1}{r^{3}}$ and $V=5$ when $r=3$, find V when $r=6$ and r when $V=320$.

Solution:
Given that $V \propto \frac{1}{r^{3}}$

Therefore, $V=\frac{k}{r^{3}}$ \qquad (i), where k is constant of variation

Putting $V=5 \& r=3$ in eq(i)
$5=\frac{k}{(3)^{3}}$
$5=\frac{k}{27}$
(5)(27) $=k$
$k=135$
V when $r=6$
Putting $r=6 \& k=135$ in eq(i)
$V=\frac{135}{(6)^{3}}$
$V=\frac{135}{216}$
$V=\frac{5}{8}$
r when $V=320$
Putting $V=320 \& k=135$ in eq(i)
$320=\frac{135}{r^{3}}$
$r^{3}=\frac{135}{320}$
$r^{3}=\frac{27}{64}$
Taking cube root on both sides
$\sqrt[3]{r^{3}}=\sqrt[3]{\frac{27}{64}}$
$r=\frac{3}{4}$
13. $m \propto \frac{1}{n^{3}}$ and $m=2$ when $n=4$, find m when $n=6$ and n when $m=432$.

Solution:

Given that $m \propto \frac{1}{n^{3}}$
Therefore, $m=\frac{k}{n^{3}} \quad$ (i), where k is constant of variation
Putting $m=2 \& n=4$ in eq(i)
$2=\frac{k}{(4)^{3}}$
$2=\frac{k}{64}$
(2) (64) $=k$
$k=128$
mwhen $n=6$
Putting $n=6 \& k=128$ in eq(i)
$m=\frac{128}{(6)^{3}}$
$m=\frac{128}{216}$
$m=\frac{16}{27}$
n when $m=432$
Putting $m=432 \& k=128$ in eq(i)
$432=\frac{128}{n^{3}}$
$n^{3}=\frac{128}{432}$

$$
\begin{aligned}
& n^{3}=\frac{64}{216} \\
& n^{3}=\left(\frac{4}{6}\right)^{3}
\end{aligned}
$$

Taking cube root on both sides
$\sqrt[3]{n^{3}}=\sqrt[3]{\left(\frac{4}{6}\right)^{3}}$
$n=\frac{4}{6}$
$n=\frac{2}{3}$

