1. If y varies directely as x, and y = 8 when x = 2, find

(i). *y* in terms of *x*

Solution:

Given that *y* varies directly as*x*,

Therefore $y \propto x \ i.e. \ y = kx$ _______(i), where k is constant of variation Putting y = 8 & x = 2 in eq. 8 = 2k $k = \frac{8}{2}$ k = 4Putting in eq (i) k = 4 y = 4x(ii). y when x = 5Solution: $y \propto x \ i.e. \ y = kx$ ______(i), where k is constant of variation Put x = 5, k = 4 in eq(i) y = (4)(5)

y = 20

(iii). x when y = 28

Solution:

 $y \propto x \ i. e. \ y = kx$ _____(i), where k is constant of variation

Put y = 28, k = 4

28 = (4)(x)

$$x = \frac{28}{4}$$

x = 7

2. If $y \propto x$, and y = 7 when x = 3 find

(i). y in terms of x

Solution:

Given that *y* varies directly as *x*

 $y \propto x \ i. e. \ y = kx$ _____(i), where k is constant of variation

Putting y = 7 and x = 3 in eq(i)

7 = (k)(3)

 $k = \frac{7}{3}$

Putting $k = \frac{7}{3}$ in eq(i)

$$y = \frac{7}{3}x$$

(ii). x when y = 35 and y when x = 18

Solution:

Maryam Jabeen

x When y = 35

Given that y varies directly as x

 $y \propto x \ i. e. y = kx$ (i), where k is constant of variation Putting $y = 35 \& k = \frac{7}{3}$ in eq(i)

$$35 = \left(\frac{7}{3}\right)(x)$$
$$x = \frac{(35)(3)}{7}$$

x = 15

y When x = 18

 $y \propto x \ i. e. \ y = kx$ _____(i), where k is constant of variation

Putting $x = 18 \& k = \frac{7}{3}$

$$y = \left(\frac{7}{3}\right)(18)$$

y = 42

3. If $R \propto T$ and R = 5 when T = 8, find the equation connecting R and T. Also find R when T = 64 & T when R = 20.

Solution:

Given that R varies directly as T

 $R \propto Ti. e. R = kT$ _____(i), where k is constant of variation

Putting R = 5 & T = 8 in eq(i)

5 = (k)(8)

$$k = \frac{5}{8}$$

R when T = 64

Putting $T = 64 \& k = \frac{5}{8}$ in eq(i) **Tyam Jabeen**

$$R = \left(\frac{5}{8}\right)(64)$$

R = 40

T when *R* = 20. Putting *R* = 20 & $k = \frac{5}{8}$ in eq(i) $20 = \left(\frac{5}{8}\right)(T)$ $T = \frac{(20)(8)}{5}$ *T* = 32

4. $R \propto T^2$ and R = 8 when T = 3, find R when T = 6.

Solution:

Given that *R* varies directly as T^2

Composed by: Maryam Jabeen

Unit # 3 VARIATIONS EXERCISE 3.2

Therefore, $R \propto T^2$ *i.e* $R = kT^2$ (i), where k is constant of variation

Putting R = 8 & T = 3 in eq(i)

8 = (k)(3)

$$k = \frac{8}{3}$$

R when T = 6

Putting $k = \frac{8}{3}$ in eq(i)

$$R = \left(\frac{8}{3}\right)T^2$$

R when T = 6

Putting $T = 6 \& k = \frac{8}{3}$ in eq(i)

$$R = \left(\frac{8}{3}\right)(6)^2$$

$$R = \left(\frac{8}{3}\right)(36)$$

5. If $V \propto R^3$ and V = 5 when R = 3 find R when V = 625.

Solution:

R = 32

Given that V varies directly as R^3

Therefore, $V \propto R^3$

i.e. $V = kR^3$ _____(i), where k is constant of variation

Putting V = 5 & R = 3 in eq(i)

 $5 = (k)(3)^3$

5 = 27k

$$k = \frac{5}{27}$$

R whenV = 625Putting $V = 625 \& k = \frac{5}{27}$ in eq(i) $625 = (\frac{5}{27})(R)^3$

 $R^3 = \frac{(625)(27)}{5}$

 $R^3 = (125)(27)$

$$R^3 = (5)^3 (3)^3$$

Taking cube root on both sides,

$$\sqrt[3]{R^3} = \sqrt[3]{(5)^3(3)^3}$$

 $R = (5)(3)$
 $R = 15$
Merging man and mat

6. If w varies directly as u^3 and w = 81 when u = 3, find w when u = 5.

Solution:

Given that w varies directly as u³ yam Jabeen

Therefore,
$$w \propto u^3$$

i.e. $w = ku^3$ (i), where k is constant of variation

Putting w = 8 & u = 3 in eq(i)

$$81 = (k)(3)^3$$

81 = 27k

$$k = \frac{81}{27}$$

k = 3

w when u = 5

Putting u = 5 & k = 3 in eq(i)

- $w = (3)(5)^3$
- w = (3)(125)
- w = 375

7. If y varies inversly as x and y = 7 when x = 2, find y when x = 126.

Solution:

Given that *y* varies inversly as *x*

Therefore, $y \propto \frac{1}{r}$ *i.e.* $y = \frac{k}{r}$ (i), where k is constant of variation Putting y = 7 & x = 2 in eq(i) $7 = \frac{k}{2}$ k = (7)(2)k = 14Maryam Jabeen y when x = 126Putting x = 126 & k = 14 in eq(i) $y = \frac{14}{126}$ $y = \frac{1}{9}$ 8. If $y \propto \frac{1}{x} \& y = 4$ when x = 3, find x when y = 24. Solution: Given that $y \propto \frac{1}{r}$ Therefore, $y = \frac{k}{x}$ _____(i), where k is constant of variation Putting y = 4 & x = 3 in eq(i)

$4 = \frac{k}{3}$
(4)(3) = k
k = 12
x when $y = 24$
Putting $y = 24 \& k = 12$ in eq(i)
$24 = \frac{12}{x}$
$x = \frac{12}{24}$
$x = \frac{1}{2}$
9. If $w \propto \frac{1}{z} \& w = 5$ when $z = 7$, find w when $z = \frac{175}{4}$.
Solution:
Given that $w \propto \frac{1}{z}$ by
Therefore, $w = \frac{k}{z}$ (i), where k is constant of variation
Putting $w = 5 \& z = 7$ in eq(i)
$5 = \frac{k}{7}$
(5)(7) = k
k = 35
wwhen $z = \frac{175}{4}$
Putting $z = \frac{175}{4}$ & $k = 35$ in eq(i)
$w = \left(\frac{35}{\frac{175}{4}}\right)$

$w = \frac{(35)(4)}{175}$		
$w = \frac{4}{5}$		
10. $A \propto \frac{1}{r^2} \& A = 2$ when $r = 3$, find r when $A = 72$.		
Solution:		
Given that $A \propto \frac{1}{r^2}$		
Therefore, $A = \frac{k}{r^2}$ (i), where k is constant of variation		
Putting $A = 2 \& r = 3$ in eq(i)		
$2 = \frac{k}{3^2}$ Mathcity.org		
$2 = \frac{k}{9}$ Merging man and math		
$(2)(9) = k \qquad by$		
^{k = 18} Maryam Jabeen		
r when $A = 72$		
Putting $A = 72 \& k = 18$ in eq(i)		
72 – ¹⁸		

 $72 = \frac{18}{r^2}$ $r^2 = \frac{18}{72}$ $r^2 = \frac{1}{4}$ $r^2 = (\frac{1}{2})^2$

Taking square root on both sides

Class 10	EXERCISE 3.2		
$\sqrt{r^2} = \sqrt{(\frac{1}{2})^2}$			
$r = \pm \frac{1}{2}$			
11. $a \propto \frac{1}{b^2} \& a = 3$ when $b = 4$, find a when $b = 8$.			
Solution:			
Given that $a \propto \frac{1}{b^2}$			
Therefore, $a = \frac{k}{b^2}$	(i), where k is constant of variation		
Putting $a = 3 \& b = 4$	t in eq(i)		
$3 = \frac{k}{4^2}$	Merging man and math		
$3 = \frac{k}{16}$			
(3)(16) = k	by		
k = 48	Maryam Jabeen		
a when b = 8			
Putting $b = 8 \& k = 4$	18		
$a = \frac{48}{(8)^2}$			
$a = \frac{48}{64}$			
$a = \frac{3}{4}$			
12. $V \propto \frac{1}{r^3}$ and $V = 5$ when $r = 3$, find V when $r = 6$ and r when $V = 320$.			
Solution:			

Given that $V \propto \frac{1}{r^3}$

Composed by: Maryam Jabeen

Unit # 3 VARIATIONS EXERCISE 3.2

Therefore, $V = \frac{k}{r^3}$ _____(i), where k is constant of variation Putting V = 5 & r = 3 in eq(i)

$$5 = \frac{5}{(3)^3}$$

$$5 = \frac{1}{27}$$

(5)(27) = k

k = 135

V when r = 6

Putting r = 6 & k = 135 in eq(i) $V = \frac{135}{(6)^3}$ $V = \frac{135}{216}$ $V = \frac{5}{8}$ Maryam Jabeen

rwhenV = 320

Putting V = 320 & k = 135 in eq(i)

$$320 = \frac{135}{r^3}$$
$$r^3 = \frac{135}{320}$$
$$r^3 = \frac{27}{64}$$

Taking cube root on both sides

$$\sqrt[3]{r^3} = \sqrt[3]{\frac{27}{64}}$$

$r = \frac{3}{4}$			
13. $m \propto \frac{1}{n^3}$ and $m = 2$ when $n = 4$, find m when $n = 6$ and n when $m = 432$.			
Solution:			
Given that $m \propto \frac{1}{n^3}$			
Therefore, $m = \frac{k}{n^3}$ (i), where k is constant of variation			
Putting $m = 2 \& n = 4$ in eq(i)			
$2 = \frac{k}{(4)^3}$			
$2 = \frac{k}{64}$			
(2)(64) = k Merging man and math			
k = 128			
m when n = 6 Dy			
Putting $n = 6 \& k = 128$ in eq(i) ryam Jabeen			
$m = \frac{128}{(6)^3}$			
$m = \frac{128}{216}$			
$m = \frac{16}{27}$			
n when m = 432			
Putting $m = 432$ & $k = 128$ in eq(i)			
$432 = \frac{128}{n^3}$			
$n^3 = \frac{128}{432}$			

$$n^3 = \frac{64}{216}$$
$$n^3 = (\frac{4}{6})^3$$

Taking cube root on both sides

 $\sqrt[3]{n^3} = \sqrt[3]{(\frac{4}{6})^3}$ $n = \frac{4}{6}$ $n = \frac{2}{3}$

by Maryam Jabeen