1. Find a third proportional to

(i). 6, 12

Solution:

Let c be the third proportional
6: $12:: 12: c$
As, product of extremes= product of means
Therefore, $6 c=(12)(12)$
$6 c=144$
$c=\frac{144}{6}$
$c=24$
(ii). $a^{3}, 3 a^{2}$

Solution:

Let c be the third proportional
$a^{3}: 3 a^{2}:=3 a^{2}: c$
As, product of extremes= product of means
So, $\left(a^{3}\right)(c)=\left(3 a^{2}\right)\left(3 a^{2}\right)$
$\left(a^{3}\right)(c)=9 a^{4}$
$c=\frac{9 a^{4}}{a^{3}}$
$c=9 a^{4-3}$
$c=9 a$
(iii). $a^{2}-b^{2}, a-b$

Solution:

Let c be the third proportional
$a^{2}-b^{2}: a-b:: a-b: c$
As, product of extremes= product of means
So, $\left(a^{2}-b^{2}\right)(c)=(a-b)(a-b)$
$c=\frac{(a-b)(a-b)}{a^{2}-b^{2}}$
$c=\frac{(a-b)(a-b)}{(a+b)(a-b)}$
$c=\frac{a-b}{a+b}$
(iv). $(x-y)^{2}, x^{3}-y^{3}$

Solution:

Let c be the third proportional
$(x-y)^{2}: x^{3}-y^{3}:: x^{3}-y^{3}: c$
As, product of extremes= product of means
So, $(x-y)^{2}(c)=\left(x^{3}-y^{3}\right)\left(x^{3}-y^{3}\right)$
$c=\frac{(x-y)\left(x^{2}+x y+b^{2}\right)(x-y)\left(x^{2}+x y+y^{2}\right)}{(x-y)(x-y)}$
$c=\left(x^{2}+x y+y^{2}\right)^{2}$
(v). $(x+y)^{2}, x^{2}-x y-2 y^{2}$

Solution:

Let c be the third proportional
$(x+y)^{2}: x^{2}-x y-2 y^{2}:: x^{2}-x y-2 y^{2}: c$
As, product of extremes= product of means
$(x+y)^{2}(c)=\left(x^{2}-x y-2 y^{2}\right)\left(x^{2}-x y-2 y^{2}\right)$
$(x+y)^{2}(c)=\left(x^{2}-x y-2 y^{2}\right)^{2}$
$c=\frac{\left(x^{2}-2 x y+x y-2 y^{2}\right)^{2}}{(x+y)^{2}}$
$c=\frac{(x(x-2 y)+y(x-2 y))^{2}}{(x+y)^{2}}$
$c=\frac{((x-2 y)(x+y))^{2}}{(x+y)^{2}}$
$c=\frac{(x-2 y)^{2}(x+y)^{2}}{(x+y)^{2}}$
$c=(x-2 y)^{2}$
(vi). $\frac{p^{2}-q^{2}}{p^{3}+q^{3}}, \frac{p-q}{p^{2}-p q+q^{2}}$

Solution:

Let c be the third proportional
$\frac{p^{2}-q^{2}}{p^{3}+q^{3}}: \frac{p-q}{p^{2}-p q+q^{2}}:: \frac{p-q}{p^{2}-p q+q^{2}}: c$
As, product of extremes= product of means
So,
$\left(\frac{p^{2}-q^{2}}{p^{3}+q^{3}}\right)(c)=\left(\frac{p-q}{p^{2}-p q+q^{2}}\right)\left(\frac{p-q}{p^{2}-p q+q^{2}}\right)$
$\left(\frac{p^{2}-q^{2}}{p^{3}+q^{3}}\right)(c)=\frac{(p-q)^{2}}{\left(p^{2}-p q+q^{2}\right)^{2}}$
$c=\left(\frac{(p-q)^{2}}{\left(p^{2}-p q+q^{2}\right)^{2}}\right)\left(\frac{p^{3}+q^{3}}{p^{2}-q^{2}}\right)$
$c=\left(\frac{(p-q)^{2}}{\left(p^{2}-p q+q^{2}\right)^{2}}\right)\left(\frac{(p+q)\left(p^{2}-p q+q^{2}\right)}{(p+q)(p-q)}\right)$
$c=\frac{p-q}{p^{2}-p q+q^{2}}$

2. Find a fourth proportional to

(i). 5, 8, 15

Solution:

Let d be the fourth proportional
5: $8:: 15: d$
As, product of extremes= product of means
So, $(5)(d)=(8)(15)$
$5 d=120$
$d=\frac{120}{5}$
$d=24$
(ii). $4 x^{4}, 2 x^{3}, 18 x^{5}$

Solution:
Let d be the fourth proportional
$4 x^{4}: 2 x^{3}:: 18 x^{5}: d$
As, product of extremes= product of means
So, $\left(4 x^{4}\right)(d)=\left(2 x^{3}\right)\left(18 x^{5}\right)$
$\left(4 x^{4}\right)(d)=36 x^{8}$
$d=\frac{36 x^{8}}{\left(4 x^{4}\right)}$
$d=9 x^{8-4}$
$d=9 x^{4}$
(iii). $15 a^{5} b^{6}, 10 a^{2} b^{5}, 21 a^{3} b^{3}$

Solution:

Let d be the fourth proportional
$15 a^{5} b^{6}: 10 a^{2} b^{5}:: 21 a^{3} b^{3}: d$
As, product of extremes= product of means

So, $\left(15 a^{5} b^{6}\right)(d)=\left(10 a^{2} b^{5}\right)\left(21 a^{3} b^{3}\right)$
$d=\frac{210 a^{2+3} b^{5+3}}{15 a^{5} b^{6}}$
$d=\frac{14 a^{5} b^{8}}{a^{5} b^{6}}$
$d=14 a^{5-5} b^{8-6}$
$d=14 a^{0} b^{2}$
$d=14 b^{2}$
(iv). $x^{2}-11 x+24,(x-3), 5 x^{4}-40 x^{3}$

Solution:

Let d be the fourth proportional

$$
x^{2}-11 x+24:(x-3):: 5 x^{4}-40 x^{3}: d
$$

As, product of extremes= product of means
So, $\left(x^{2}-11 x+24\right)(d)=(x-3)\left(5 x^{4}-40 x^{3}\right)$
$d=\frac{5 x^{3}(x-8)(x-3)}{x^{2}-3 x-8 x+24}$
$d=\frac{5 x^{3}(x-8)(x-3)}{x(x-3)-8(x-3)}$
$d=\frac{5 x^{3}(x-8)(x-3)}{(x-3)(x-8)}$
$d=5 x^{3}$
(v). $p^{3}+q^{3}, p^{2}-q^{2}, p^{2}-p q+q^{2}$

Solution:
Let d be the fourth proportional
$p^{3}+q^{3}: p^{2}-q^{2}:: p^{2}-p q+q^{2}: d$
As, product of extremes= product of means

So, $\left(p^{3}+q^{3}\right)(d)=\left(p^{2}-q^{2}\right)\left(p^{2}-p q+q^{2}\right)$
$d=\frac{\left(p^{2}-q^{2}\right)\left(p^{2}-p q+q^{2}\right)}{p^{3}+q^{3}}$
$d=\frac{(p+q)(p-q)\left(p^{2}-p q+q^{2}\right)}{(p+q)\left(p^{2}-p q+q^{2}\right)}$
$d=p+q$
(vi). $\left(p^{2}-q^{2}\right)\left(p^{2}+p q+q^{2}\right),\left(p^{3}+q^{3}\right),\left(p^{3}-q^{3}\right)$

Solution:

Let d be the fourth proportional
$\left(p^{2}-q^{2}\right)\left(p^{2}+p q+q^{2}\right): p^{3}+q^{3}:: p^{3}-q^{3}: d$
As, product of extremes = product of means
So, $\left(p^{2}-q^{2}\right)\left(p^{2}+p q+q^{2}\right)(d)=\left(p^{3}+q^{3}\right)\left(p^{3}-q^{3}\right)$
$d=\frac{\left(p^{3}+q^{3}\right)\left(p^{3}-q^{3}\right)}{\left(p^{2}-q^{2}\right)\left(p^{2}+p q+q^{2}\right)}$
$d=\frac{(p+q)\left(p^{2}-p q+q^{2}\right)(p-q)\left(p^{2}+p q+q^{2}\right)}{(p+q)(p-q)\left(p^{2}+p q+q^{2}\right)}$
$d=p^{2}-p q+q^{2}$
3. Find a mean proportional between
(i). 20, 45

Solution:
Let m be the mean proportional
20: $m:: m: 45$
As, product of means = product of extremes
So, $(m)(m)=(20)(45)$
$m^{2}=900$

Taking square root on both sides
$\sqrt{m^{2}}=\sqrt{900}$
$m= \pm 30$
(ii). $20 x^{3} y^{5}, 5 x^{7} y$

Solution:

Let m be the mean proportional
$20 x^{3} y^{5}: m:: m: 5 x^{7} y$
As, product of means = product of extremes
So, $(m)(m)=\left(20 x^{3} y^{5}\right)\left(5 x^{7} y\right)$
$m^{2}=100 x^{3+7} y^{5+1}$
$m^{2}=100 x^{10} y^{6}$
$m^{2}=(10)^{2}\left(x^{5}\right)^{2}\left(y^{3}\right)^{2}$
Taking square root on both sides
$\sqrt{m^{2}}=\sqrt{(10)^{2}\left(x^{5}\right)^{2}\left(y^{3}\right)^{2}} /$ aryam Jabeen
$m= \pm 10 x^{5} y^{3}$
(iii). $\mathbf{1 5} \boldsymbol{p}^{4} \boldsymbol{q} \boldsymbol{r}^{\mathbf{3}}, \mathbf{1 3 5} \boldsymbol{q}^{5} \boldsymbol{r}^{7}$

Solution:

Let m be the mean proportional
$15 p^{4} q r^{3}: m:: m: 135 q^{5} r^{7}$
As, product of means = product of extremes
So, $(m)(m)=\left(15 p^{4} q r^{3}\right)\left(135 q^{5} r^{7}\right)$
$m^{2}=2025 p^{4} q^{1+5} r^{3+7}$
$m^{2}=2025 p^{4} q^{6} r^{10}$
$m^{2}=(45)^{2}\left(p^{2}\right)^{2}\left(q^{3}\right)^{2}\left(r^{5}\right)^{2}$

Taking square root on both sides
$\sqrt{m^{2}}=\sqrt{(45)^{2}\left(p^{2}\right)^{2}\left(q^{3}\right)^{2}\left(r^{5}\right)^{2}}$
$m= \pm 45 p^{2} q^{3} r^{5}$
(iv). $x^{2}-y^{2}, \frac{x-y}{x+y}$

Solution:

Let m be the mean proportional
$x^{2}-y^{2}: m:: m: \frac{x-y}{x+y}$
As, product of means = product of extremes
So, $(m)(m)=\left(x^{2}-y^{2}\right)\left(\frac{x-y}{x+y}\right)$
$m^{2}=\frac{(x-y)(x+y)(x-y)}{x+y}$
$m^{2}=(x-y)^{2}$
Taking square root on both sides
$\sqrt{m^{2}}=\sqrt{(x-y)^{2}}$
$m= \pm(x-y)$
4. Find the value of the letter involved in the following continued proportions
(i). $5, p, 45$

Solution:

Since $5, p, 45$ are in continued proportion
5: $p:: p: 45$
As, product of means = product of extremes
So, $(p)(p)=(5)(45)$
$p^{2}=225$

$$
p^{2}=(15)^{2}
$$

Taking square root on both sides
$\sqrt{p^{2}}=\sqrt{(15)^{2}}$
$p= \pm 15$
(ii). $8, x, 18$

Solution:

Since 8, x and 18 are in continued proportion
8: $x:: x: 18$
As, product of means = product of extremes
$(x)(x)=(8)(18)$
$x^{2}=144$
$x^{2}=(12)^{2}$
Taking square root on both sides
$\sqrt{x^{2}}=\sqrt{(12)^{2}}$
$x= \pm 12$
(iii). 12, $3 p-6,27$

Solution:

Since $12,3 p-6$ and 27 are in continued proportion
$12: 3 p-6:: 3 p-6: 27$
As, product of means $=$ product of extremes
$(3 p-6)(3 p-6)=(12)(27)$
$(3 p-6)^{2}=324$
$(3 p-6)^{2}=(18)^{2}$
Taking square root on both sides
$\sqrt{(3 p-6)^{2}}=\sqrt{(18)^{2}}$
$3 p-6= \pm 18$
$3 p-6=18 \quad ; \quad 3 p-6=-18$
$3 p=18+6 \quad ; \quad 3 p=-18+6$
$3 p=24 \quad ; \quad 3 p=-12$
$p=\frac{24}{3} \quad ; \quad p=-\frac{12}{3}$
$p=8$
$p=-4$
(iv). $7, m-3,28$

Solution:

Since $7, m-3$ and 28 are in continued proportion
$7: m-3:: m-3: 28$
As, product of means = product of extremes
$(m-3)(m-3)=(7)(28)$
$(m-3)^{2}=196$
$(m-3)^{2}=(14)^{2}$
Taking square root on both sides
$\sqrt{(m-3)^{2}}=\sqrt{(14)^{2}}$
$m-3= \pm 14$
$m-3=14 \quad ; \quad m-3=-14$
$m=14+3 \quad ; \quad m=-14+3$
$m=17$
$m=-11$

