1. Find a third proportional to

(i). 6, 12

Solution:

Let *c* be the third proportional

6: 12 :: 12: *c*

As, product of extremes= product of means

Therefore, 6c = (12)(12)

6c = 144

$$c = \frac{144}{6}$$

$$c = 24$$

(ii). a^3 , $3a^2$

Solution:

Let *c* be the third proportional

$$a^3: 3a^2: 3a^2: c$$

Maryam Jabeen

As, product of extremes= product of means

So,
$$(a^{3})(c) = (3a^{2})(3a^{2})$$

 $(a^{3})(c) = 9a^{4}$
 $c = \frac{9a^{4}}{a^{3}}$
 $c = 9a^{4-3}$
 $c = 9a$
(iii). $a^{2} - b^{2}, a - b$
Solution:

Let *c* be the third proportional

 $a^2 - b^2$: a - b :: a - b: c

As, product of extremes= product of means

So,
$$(a^2 - b^2)(c) = (a - b)(a - b)$$

 $c = \frac{(a - b)(a - b)}{a^2 - b^2}$
 $c = \frac{(a - b)(a - b)}{(a + b)(a - b)}$
 $c = \frac{a - b}{a + b}$

(iv). $(x - y)^2$, $x^3 - y^3$

Solution:

Let *c* be the third proportional

$$(x-y)^2: x^3 - y^3: x^3 - y^3: c$$
 man and math

As, product of extremes= product of means

So,
$$(x - y)^2(c) = (x^3 - y^3)(x^3 - y^3)$$

 $c = \frac{(x - y)(x^2 + xy + b^2)(x - y)(x^2 + xy + y^2)}{(x - y)(x - y)}$
 $c = (x^2 + xy + y^2)^2$
(y), $(x + y)^2 x^2 - xy - 2y^2$

Solution:

Let *c* be the third proportional

$$(x + y)^2$$
: $x^2 - xy - 2y^2$:: $x^2 - xy - 2y^2$: c

As, product of extremes= product of means

$$(x + y)^{2}(c) = (x^{2} - xy - 2y^{2})(x^{2} - xy - 2y^{2})$$
$$(x + y)^{2}(c) = (x^{2} - xy - 2y^{2})^{2}$$

heen

$$c = \frac{(x^2 - 2xy + xy - 2y^2)^2}{(x + y)^2}$$

$$c = \frac{(x(x - 2y) + y(x - 2y))^2}{(x + y)^2}$$

$$c = \frac{((x - 2y)(x + y))^2}{(x + y)^2}$$

$$c = \frac{(x - 2y)^2(x + y)^2}{(x + y)^2}$$

$$c = (x - 2y)^2$$

(vi).
$$\frac{p^2-q^2}{p^3+q^3}$$
, $\frac{p-q}{p^2-pq+q^2}$

Solution:

MathCity.org Let *c* be the third proportional ging man and math

$$\frac{p^2 - q^2}{p^3 + q^3} : \frac{p - q}{p^2 - pq + q^2} :: \frac{p - q}{p^2 - pq + q^2} : c$$

As, product of extremes= product of means

So,

$$\left(\frac{p^{2}-q^{2}}{p^{3}+q^{3}}\right)(c) = \left(\frac{p-q}{p^{2}-pq+q^{2}}\right)\left(\frac{p-q}{p^{2}-pq+q^{2}}\right)$$

$$\left(\frac{p^{2}-q^{2}}{p^{3}+q^{3}}\right)(c) = \frac{(p-q)^{2}}{(p^{2}-pq+q^{2})^{2}}$$

$$c = \left(\frac{(p-q)^{2}}{(p^{2}-pq+q^{2})^{2}}\right)\left(\frac{p^{3}+q^{3}}{p^{2}-q^{2}}\right)$$

$$c = \left(\frac{(p-q)^{2}}{(p^{2}-pq+q^{2})^{2}}\right)\left(\frac{(p+q)(p^{2}-pq+q^{2})}{(p+q)(p-q)}\right)$$

$$c = \frac{p-q}{p^{2}-pq+q^{2}}$$

2. Find a fourth proportional to

Solution:

Let *d* be the fourth proportional

5:8 :: 15:*d*

As, product of extremes= product of means

So,
$$(5)(d) = (8)(15)$$

5d = 120

$$d = \frac{120}{5}$$

d = 24

(ii). $4x^4$, $2x^3$, $18x^5$

Solution:

Let *d* be the fourth proportional **and math**

 $4x^4: 2x^3 :: 18x^5: d$

As, product of extremes= product of means

So,
$$(4x^4)(d) = (2x^3)(18x^5)$$

 $(4x^4)(d) = 36x^8$
 $d = \frac{36x^8}{(4x^4)}$

 $d = 9x^{8-4}$

$$d = 9x^4$$

(iii). $15a^5b^6$, $10a^2b^5$, $21a^3b^3$

Solution:

Let *d* be the fourth proportional

 $15a^5b^6: 10a^2b^5:: 21a^3b^3: d$

As, product of extremes= product of means

So,
$$(15a^5b^6)(d) = (10a^2b^5)(21a^3b^3)$$

$$d = \frac{210a^{2+3}b^{5+3}}{15a^5b^6}$$
$$d = \frac{14a^5b^8}{a^5b^6}$$
$$d = 14a^{5-5}b^{8-6}$$
$$d = 14a^0b^2$$
$$d = 14b^2$$

(iv). $x^2 - 11x + 24$, (x - 3), $5x^4 - 40x^3$

Solution:

Solution: Let *d* be the fourth proportional

$$x^{2} - 11x + 24:(x - 3):: 5x^{4} - 40x^{3}:d$$

As, product of extremes= product of means

So,
$$(x^{2} - 11x + 24)(d) = (x - 3)(5x^{4} - 40x^{3})$$

 $d = \frac{5x^{3}(x - 8)(x - 3)}{x^{2} - 3x - 8x + 24}$ Maryam Jabeen
 $d = \frac{5x^{3}(x - 8)(x - 3)}{x(x - 3) - 8(x - 3)}$
 $d = \frac{5x^{3}(x - 8)(x - 3)}{(x - 3)(x - 8)}$
 $d = 5x^{3}$
(v). $p^{3} + q^{3}, p^{2} - q^{2}, p^{2} - pq + q^{2}$

Solution:

Let *d* be the fourth proportional

$$p^3 + q^3: p^2 - q^2 :: p^2 - pq + q^2: d$$

As, product of extremes= product of means

So,
$$(p^3 + q^3)(d) = (p^2 - q^2)(p^2 - pq + q^2)$$

$$d = \frac{(p^2 - q^2)(p^2 - pq + q^2)}{p^3 + q^3}$$

$$d = \frac{(p+q)(p-q)(p^2 - pq + q^2)}{(p+q)(p^2 - pq + q^2)}$$

$$d = p + q$$
(vi). $(p^2 - q^2)(p^2 + pq + q^2), (p^3 + q^3), (p^3 - q^3)$

Solution:

Let *d* be the fourth proportional

$$(p^2 - q^2)(p^2 + pq + q^2)$$
: $p^3 + q^3$:: $p^3 - q^3$: d
As, product of extremes= product of means

So,
$$(p^2 - q^2)(p^2 + pq + q^2)(d) = (p^3 + q^3)(p^3 - q^3)$$

2

$$d = \frac{(p^{3} + q^{3})(p^{3} - q^{3})}{(p^{2} - q^{2})(p^{2} + pq + q^{2})}$$

$$d = \frac{(p+q)(p^{2} - pq + q^{2})(p-q)(p^{2} + pq + q^{2})}{(p+q)(p-q)(p^{2} + pq + q^{2})}$$
Deen

 $d = p^2 - pq + q^2$

3. Find a mean proportional between

(i). 20, 45

Solution:

Let m be the mean proportional

20:m:m:45

As, product of means = product of extremes

So,
$$(m)(m) = (20)(45)$$

 $m^2 = 900$

Taking square root on both sides

$$\sqrt{m^2} = \sqrt{900}$$

 $m = \pm 30$

(ii). $20x^3y^5$, $5x^7y$

Solution:

Let m be the mean proportional

$$20x^3y^5$$
: $m :: m: 5x^7y$

As, product of means = product of extremes

So,
$$(m)(m) = (20x^3y^5)(5x^7y)$$

 $m^2 = 100x^{3+7}y^{5+1}$
 $m^2 = 100x^{10}y^6$
 $m^2 = (10)^2(x^5)^2(y^3)^2$

Taking square root on both sides

$$\sqrt{m^2} = \sqrt{(10)^2 (x^5)^2 (y^3)^2}$$
 laryam Jabeen
 $m = \pm 10x^5y^3$
(iii). $15p^4qr^3, 135q^5r^7$

Solution:

Let m be the mean proportional

$$15p^4qr^3:m:m:135q^5r^7$$

As, product of means = product of extremes

So,
$$(m)(m) = (15p^4qr^3)(135q^5r^7)$$

 $m^2 = 2025p^4q^{1+5}r^{3+7}$
 $m^2 = 2025p^4q^6r^{10}$
 $m^2 = (45)^2(p^2)^2(q^3)^2(r^5)^2$

Taking square root on both sides

$$\sqrt{m^{2}} = \sqrt{(45)^{2}(p^{2})^{2}(q^{3})^{2}(r^{5})^{2}}$$
$$m = \pm 45p^{2}q^{3}r^{5}$$
(iv). $x^{2} - y^{2}, \frac{x-y}{x+y}$

Solution:

Let m be the mean proportional

 $x^2 - y^2$: m :: m: $\frac{x - y}{x + y}$

As, product of means = product of extremes

So,
$$(m)(m) = (x^2 - y^2) \left(\frac{x - y}{x + y}\right)$$

 $m^2 = \frac{(x - y)(x + y)(x - y)}{x + y}$
 $m^2 = (x - y)^2$

Taking square root on both sides ryam Jabeen

$$\sqrt{m^2} = \sqrt{(x-y)^2}$$

 $m=\pm(x-y)$

4. Find the value of the letter involved in the following continued proportions

(i). 5, *p*, 45

Solution:

Since 5, *p*, 45 are in continued proportion

5: p :: p: 45

As, product of means = product of extremes

So,
$$(p)(p) = (5)(45)$$

 $p^2 = 225$

$p^2 = (15)^2$

Taking square root on both sides

$$\sqrt{p^2} = \sqrt{(15)^2}$$

 $p = \pm 15$

(ii). 8, *x*, 18

Solution:

Since 8, x and 18 are in continued proportion

8: *x* :: *x*: 18

As, product of means = product of extremes

$$(x)(x) = (8)(18)$$

$$x^2 = 144$$

$$x^2 = (12)^2$$

Taking square root on both sides

$$\sqrt{x^2} = \sqrt{(12)^2}$$

Maryam Jabeen

 $x = \pm 12$

```
(iii). 12, 3p – 6, 27
```

Solution:

Since 12, 3p - 6 and 27 are in continued proportion

12: 3p - 6 :: 3p - 6: 27

As, product of means = product of extremes

$$(3p-6)(3p-6) = (12)(27)$$

$$(3p-6)^2 = 324$$

$$(3p-6)^2 = (18)^2$$

Taking square root on both sides

$\sqrt{(3p-6)^2} = \sqrt{(18)^2}$		
$3p-6=\pm 18$		
3p - 6 = 18	;	3p - 6 = -18
3p = 18 + 6	;	3p = -18 + 6
3p = 24	;	3p = -12
$p = \frac{24}{3}$;	$p = -\frac{12}{3}$
p = 8	;	p = -4

(iv). 7, m - 3, 28

Solution:

Since 7, m - 3 and 28 are in continued proportion , Merging man and math

$$7: m - 3 :: m - 3: 28$$

As, product of means = product of extremes

$$(m-3)(m-3) = (7)(28)$$

 $(m-3)^2 = 196$
 $(m-3)^2 = (14)^2$

Taking square root on both sides

$$\sqrt{(m-3)^2} = \sqrt{(14)^2}$$

$$m-3 = \pm 14$$

$$m-3 = 14$$
;
$$m-3 = -14$$

$$m = -14 + 3$$
;
$$m = -14 + 3$$
;
$$m = -11$$