1. If s varies directly $\operatorname{as} u^{2}$ and inversely as v and $s=7$ when $u=3, v=2$. Find the value of s when $u=6$ and $v=10$.

Solution:

Since s varies directly as u^{2} and inversely as v
So, $s \propto \frac{u^{2}}{v}$
$s=\frac{k u^{2}}{v}$
Where k is the constant of variation
putting $s=7, u=3 \& v=2$
$7=\frac{k(3)^{2}}{2}$
$(7)(2)=9 k$
$14=9 k$
$k=\frac{14}{9}$
Putting $k=\frac{14}{9}$ in eq(i)
$s=\frac{14 u^{2}}{9 v}$
Putting $u=6 \& v=10$ in above eq.
$s=\frac{14(6)^{2}}{(9)(10)}$
$s=\frac{(14)(36)}{90}$
$s=\frac{28}{5}$
2. If w varies jointly as $x, y^{2} \& z$ and $w=5$ when $x=2, y=3, z=10$. Find w when $x=4, y=7 \& z=3$.

Solution:

So, $w \propto x y^{2} z$
$w=k x y^{2} z$
Where k is the constant of variation
Putting $w=5, x=2, y=3 \& z=10$ in eq(i)
$5=k(2)(3)^{2}(10)$
$5=180 k$
$k=\frac{5}{180}$
$k=\frac{1}{36}$
Putting $k=\frac{1}{36}$ in eq(i)
$w=\frac{x y^{2} z}{36}$
Putting $x=4, y=7 \& z=3$ in above equation
$w=\frac{(4)(7)^{2}(3)}{36}$
$w=\frac{49}{3}$
3. If y varies directly as x^{3} and inversely as z^{2} and t, and $y=16$ when $x=4, z=2, t=$ 3. Find the value of y when $x=2, z=3 \& t=4$.

Solution:

Since, y varies directly as x^{3} and inversely as z^{2}
So,$y \propto x^{3} z^{2} t$
$y=\frac{k x^{3}}{z^{2} t}$
Where k is the constant of variation

Putting $y=16, x=4, z=2 \& t=3$ in eq(i)
$16=\frac{k(4)^{3}}{(2)^{2}(3)}$
$16=\frac{64 k}{12}$
$k=\frac{(16)(12)}{64}$
$k=3$
Putting $k=3$ in eq(i)
$y=\frac{3 x^{3}}{z^{2} t}$
Putting $x=2, z=3 \& t=4$ in above equation
$y=\frac{(3)(2)^{3}}{(3)^{2}(4)}$
$y=\frac{(3)(8)}{(9)(4)}$
$y=\frac{2}{3}$
4. If u varies directly as x^{2} and inversely as the product of $y z^{3}$ and $u=2$ when $x=8, y=$ $7, z=2$. Find the value of u when $x=6, y=3, z=2$.

Solution:

Since, u varies directly as x^{2} and inversely as the product of $y z^{3}$
So,$u \propto \frac{x^{2}}{y z^{3}}$
$u=\frac{k x^{2}}{y z^{3}}$
Where k is the constant of variation
Putting $u=2, x=8, y=7 \& z=2$ in eq(i)
$2=\frac{k(8)^{2}}{7(2)^{3}}$
$2=\frac{64 k}{(7)(8)}$
$k=\frac{(2)(7)(8)}{64}$
$k=\frac{7}{4}$
Putting $k=\frac{7}{4}$ in eq(i)
$u=\frac{7 x^{2}}{4 y z^{3}}$
Putting $x=6, y=3 \& z=2$ in above equation
$u=\frac{7(6)^{2}}{(4)(3)(2)^{3}}$
$u=\frac{(7)(36)}{(12)(8)}$
$u=\frac{21}{8}$
5. If v varies directly as the product of $x y^{3}$ and inversely as z^{2} and $v=27$ when $x=$ $7, y=6, z=7$. Find the value of v when $x=6, y=2, z=3$.

Solution:

Since, v varies directly as the product of $x y^{3}$ and inversely as z^{2}
So, $v \propto \frac{x y^{3}}{z^{2}}$
$v=\frac{k x y^{3}}{z^{2}}$
Where k is the constant of variation
Putting $v=27, x=7, y=6, z=7$ in eq(i)
$27=\frac{k(7)(6)^{3}}{(7)^{2}}$
$27=\frac{k(7)(216)}{49}$
$27=\frac{216 k}{7}$
$k=\frac{(27)(7)}{216}$
$k=\frac{7}{8}$
Putting $k=\frac{7}{8}$ in eq(i)
$v=\frac{7 x y^{3}}{8 z^{2}}$
Putting $x=6, y=2 \& z=3$ in above equation
$v=\frac{(7)(6)(2)^{3}}{8(3)^{2}}$
$v=\frac{(42)(8)}{(8)(9)}$
$v=\frac{42}{9}$
$v=\frac{14}{3}$
6. If w varies inversely as the cube of u and $w=5$ when $u=3$. Find w, when $u=6$.

Solution:

Since, w varies as the cube of u
So, $w \propto \frac{1}{u^{3}}$
$w=\frac{k}{u^{3}}$
Where k is the constant of variation.

Putting $w=5 \& u=3$ in eq(i)
$5=\frac{k}{(3)^{3}}$
$5=\frac{k}{27}$
$k=(5)(27)$
$k=135$
Putting $k=135$ in eq(i)
$w=\frac{135}{u^{3}}$
Putting $u=6$ in above equation
$w=\frac{135}{(6)^{3}}$
$w=\frac{135}{216}$
$w=\frac{5}{8}$

