1. The surface area A of a cube varies directly as the square of length (l) of an edge and $A=27$ square units when $l=3$ units. Find $(i) A$ when $l=4$ units $(i i) l$ when $A=12$ square units.

Solution:

Given that
$A \propto l^{2}$
$A=k l^{2}$
Where k is the constant of variation.
Putting $A=27$ sq.units \& $l=3$ units in eq(i)
$27=k(3)^{2}$
$27=9 k$
$k=\frac{27}{9}$
$k=3$
Putting $k=3$ in eq(i)
$A=3 l^{2}$

(i) A when $l=4$ units

Putting $l=4$ in eq(ii)
$A=(3)(4)^{2}$
$A=(3)(16)$
$A=48$ sq.units
(ii) l when $A=12$ square units.

Putting $A=12$ eq(ii)
$12=(3) l^{2}$
$l^{2}=\frac{12}{3}$
$l^{2}=4$
$l^{2}=(2)^{2}$
Taking square root on both sides
$\sqrt{l^{2}}=\sqrt{(2)^{2}}$
$l= \pm 2$
Taking positive value of l
So, $l=2$ units
2. The surface area S of the sphere varies directly as square of radiusr, and $S=16 \pi$ when $r=2$. Find r when $S=36 \pi$.

Solution:

Given that
$S \propto r^{2}$
$S=k r^{2}$
Where k is the constant of variation.
Putting $S=16 \pi \& r=2$ in eq(i)
$16 \pi=k(2)^{2}$
$16 \pi=4 k$
$k=\frac{16 \pi}{4}$
$k=4 \pi$
Putting $k=4 \pi$ in eq(i)
$S=4 r^{2} \pi$
Putting $S=36 \pi$ in above eq.
$36 \pi=4 r^{2} \pi$
$r^{2}=\frac{36 \pi}{4 \pi}$
$r^{2}=9$
$r^{2}=(3)^{2}$
Taking square root on both sides
$\sqrt{r^{2}}=\sqrt{(3)^{2}}$
$r= \pm 3$
Taking positive value of r
So, $r=3$
3. In Hook's law the force F applied to stretch a string varies directly as the amount of elongation S and $F=32 l b$ when $S=1.6 i n$. Find (i) S when $F=50 l b$ (ii) F when $S=0.8$ in .

Solution:

Given that
$F \propto S$
$F=k S$
Where k is the constant of variation.
Putting $F=32 l b \& S=1.6$ in in eq(i)
$32 l b=k(1.6 \mathrm{in})$
$k=\frac{32 l b}{1.6 i n}$
$k=20 l b / i n$
Putting $k=20 l b /$ in in eq(i)
$F=20 S l b / i n$ \qquad (ii)
(i) S when $F=50 l b$

Putting $F=50 l b$ in eq(ii)
$50 l b=20 S l b / i n$
$S=\frac{(50 l b)(i n)}{20 l b}$
$S=\frac{5}{2}$ in
$S=2.5 \mathrm{in}$
(ii) F when $S=0.8$ in

Putting $S=0.8$ in in eq(ii)
$F=(20)(0.8 i n)\left(\frac{l b}{i n}\right)$
$F=16 l b$
4. The intensity I of light from a given source varies directly as the square $o g$ distance d from it. If the intensity is 20 candlepower at a distance of 12 ft . from the source, find the intensity at a point 8 ft . from the source.

Solution:

$I \propto \frac{1}{d^{2}}$
Maryam Jabeen
$I=\frac{k}{d^{2}}$
Where k is the constant of variation.
Putting $I=20$ candlepower $\& d=12 f t$. In eq(i)
20 candlepower $=\frac{k}{(12 f t .)^{2}}$
$k=(20)(144)$ candlepower $f t .{ }^{2}$
$k=2880$ candlepower $f t .{ }^{2}$
Putting $k=2880$ candlepower $f t .{ }^{2}$ in eq(i)
$I=\frac{2880}{d^{2}}$ candlepower $f t^{2}$

Putting $d=8 f t$. in above equation
$I=\frac{2880}{(8 f t .)^{2}}$ candlepower $f t^{2}$.
$I=\frac{2880}{64 f t .^{2}}$ candlepowerft. ${ }^{2}$
$I=45$ candlepower
5. The pressure P in a body of fluid varies directly as the depth d. If the pressure exerted on the bottom of the tank by a column of fluid 5 ft . high is $2.25 \mathrm{lb} / \mathbf{s q}$. in, how deep must the fluid be to exert a pressure of $91 \mathrm{lb} / \mathbf{s q}$. in?

Solution:

$P \propto d$
$P=k d$
Where k is the constant of variation.
Putting $P=2.25 l b /$ sq.in $\& d=5 f t$. In eq(i)
$2.25 l b / s q . i n=k(5 f t$.
$k=\frac{2.25 l b}{5 \operatorname{sq\cdot in}(f t .)}$
$k=0.45 \mathrm{lb} / \mathrm{sq} . \mathrm{in}(f t$.
Putting $k=0.45 \mathrm{lb} / \operatorname{sq} \cdot \operatorname{in}(f t$.$) in eq(i)$
$P=0.45 d \mathrm{lb} / \operatorname{sq} . \operatorname{in}(f t$.
Putting $P=9 \mathrm{lb} / \mathrm{sq}$. in in eq(ii)
$9 \mathrm{lb} / \mathrm{sq} . \mathrm{in}=(0.45)(d) \mathrm{lb} / \mathrm{sq} \cdot \mathrm{in}(f t$.
$d=\frac{9 l b s q \cdot i n(f t .)}{0.45 l b s q \cdot i n}$
$d=20 f t$.
6. Labour costs \boldsymbol{c} varies jointly as the number of worker \boldsymbol{n} and the average number of daysd. If the cost of $\mathbf{8 0 0}$ workers for 13 days is Rs. 286000 , then find the labour cost of 600 workers for 18 days.

Solution:

Given that
$c \propto n d$
$c=k n d$
Where k is the constant of variation.
Putting $c=286000, n=800 \& d=13$ in eq(i)
$286000=k(800)(13)$
$286000=10400 k$
$k=\frac{286000}{10400}$
$k=\frac{55}{2}$
Putting $k=\frac{55}{2}$ in eq(i)
$c=\frac{55 n d}{2}$
Putting $n=600 \& d=18$ in above equation
$c=\frac{(55)(600)(18)}{2}$
$c=297,000$ Rs.
7. The supporting load \boldsymbol{c} of a pillar varies as the fourth power of its diameter \boldsymbol{d} and inversely as the square of its lengthl. A pillar of diameter 6 inch and of height 30 feet will support a load of 63 tons. How high a 4inch pillar must be to support a load of 28 tons?

Solution:

Given that
$c \propto \frac{d^{4}}{l^{2}}$
$c=\frac{k d^{4}}{l^{2}}$
Where k is the constant of variation.
Putting $c=63$ tons, $d=6$ inch $\& l=30$ feet in eq(i)
$63=\frac{k(6)^{4}}{(30)^{2}}$
$63=\frac{1296 k}{900}$
$k=\frac{(63)(900)}{1296}$
$k=\frac{175}{4}$
Putting $k=\frac{175}{4}$ in eq(i)
$c=\frac{175 d^{4}}{4 l^{2}}$
Putting $c=28$ tons $\& d=4 i n$. In above equation
$28=\frac{(175)(4)^{4}}{4 l^{2}}$
$l^{2}=\frac{(175)(256)}{(4)(28)}$
$l^{2}=400$
$l^{2}=(20)^{2}$
Taking square root on both sides
$\sqrt{l^{2}}=\sqrt{(20)^{2}}$
$l= \pm 20$
Taking positive value of l

So, $l=20$ feet
8. The time T required for an elevator to lift a weight varies jointly as the weight w and the lifting depth \boldsymbol{d} varies inversely as the power \boldsymbol{p} of the motor. If $\mathbf{2 5} \mathbf{~ s e c}$. are required for a 4-hp motor to lift 5001b through 40ft, what power is required to lift 8001 lb , through 120ft in 40 sec.?

Solution:

Given that
$T \propto \frac{w d}{p}$
$T=\frac{k w d}{p}$
Where k is the constant of variation.
Putting $T=25 \mathrm{sec} ., w=500 \mathrm{lb}, d=40 \mathrm{ft} \& p=4 \mathrm{hp}$ in eq(i)
$25=\frac{k(500)(40)}{4}$
$k=\frac{(25)(4)}{(500)(40)}$
$k=\frac{1}{200}$
Putting $k=\frac{1}{200}$ in eq(i)
$T=\frac{w d}{200 p}$
Putting $w=800 \mathrm{lb}, T=40 \mathrm{sec} ., d=120 \mathrm{ft}$. In above equation
$40=\frac{(800)(120)}{200 p}$
$p=\frac{96000}{(200)(40)}$
$p=\frac{96000}{8000}$
$p=12 h p$
9. The kinetic energy (K.E) of a body varies jointly as the mass " m " of the body and the square of its velocity" v ". If kinetic energy is 4320 ft ./lb. when the mass is 45 lb . and the velocity is $\mathbf{2 4} \mathbf{f t}$./sec, determine the kinetic energy of a 30001b automobile travelling 44 ft./sec.

Solution:

Given that
$K . E \propto m v^{2}$
$K . E=k m v^{2}$
Where k is the constant of variation.
Putting $K . E=4320 \frac{\mathrm{ft}}{\mathrm{lb}}, m=45 \mathrm{lb} \& v=24 \mathrm{ft} / \mathrm{sec}$ in eq(i)
$4320=k(45)(24)^{2}$
$4320=k(45)(576)$
$k=\frac{4320}{25920}$
$k=\frac{27}{167}$
Putting $k=\frac{27}{167}$ in eq(i)
$K . E=\frac{27 m v^{2}}{167}$
Putting $w=3000 \mathrm{lb}, v=44 \mathrm{ft} / \mathrm{sec}$ in above equation
$K . E=\frac{(27)(3000)(44)^{2}}{167}$
$K . E=\frac{(27)(3000)(1936)}{167}$
$K . E=968,000 f t / l b$

