The important questions of Chapter 2 of Textbook of Algebra and Trigonometry Class XI is published by Punjab Textbook Board (PTB) Lahore, Pakistan has been given on this page. These questions are selected from old papers.
- Find multiplicative inverse (2,4) — BISE Gujrawala(2015)
- Find power set of {a,{b,c}} — BISE Gujrawala(2015)
- Prove that A−B=A∪Bc — BISE Gujrawala(2015)
- Write converse and contra positive of p⟶q — BISE Gujrawala(2015)
- Write the inverse of {(1,2),(2,5),(3,7),(4,9),(5,11)} — BISE Gujrawala(2015)
- What is the difference between {a,b} and {{a,b}} — BISE Gujrawala(2017)
- Show that (p⟶q)⟶p — BISE Gujrawala(2017)
- Prove that A∩(B∪C)=(A∩B)∪(A∩C) — BISE Gujrawala, BISE Lahore (2017)
- If A={1,2,3,4}, B={3,4,5,6,7,8} and C={5,6,7,9,10} then verify associativity of union — BISE Sargodha(2015)
- If A,B are elements of a group G then show that (ab)−1=b−1a−1 — BISE Sargodha(2015)
- For A={1,2,3} find the relation {(x,y)|x+y<5} — BISE Sargodha(2015)
- Write the set {x|x∈Q∧x2=2} in descriptive and tabular form — BISE Sargodha(2015)
- If a,b being elements of a group G then solve (a) ax=b (b) xa=b — BISE Gujrawala(2015)
- Write converse and contrapositive of q⟶p — BISE Sargodha(2015)
- Write down the power set of {a,b,c} — BISE Sargodha(2015)
- Write down the power set of {9,11} — BISE Sargodha(2016)
- Find converse, inverse of the conditional p⟶ q — BISE Sargodha(2016)
- Solve the equation a⋇x=b where a,b∈G and G is a group — BISE Sargodha(2016)
- Write the converse and inverse of p⟶q — BISE Sargodha(2016)
- Convert the given theorem to logical form and prove by constructing truth table A∪(B∩C)=(A∪B)∩(A∪C) — BISE Sargodha(2017)