Solutions of Question 2 of Exercise 1.2 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
z1=−1+i, z2=3−2i and z3=2−2i, then verify associative property w.r.t. addition and multiplication.
Given z1=−1+i, z2=3−2i and z3=2−2i. First, we prove associative property under addition, that is, (z1+z2)+z3=z1+(z2+z3). Take z1+z2=(−1+i)+(3−2i)=2−i So (z1+z2)+z3=(2−i)+(2−2i)=4−3i…(1) Now z2+z3=(3−2i)+(2−2i)=5−4i So z1+(z2+z3)=(−1+i)+(5−4i)=4−3i…(2) From (1) and (2), we have the required result.
Now, we prove associative property under multiplication, that is, z1(z2z3)=(z1z2)z3. Take z2z3=(3−2i)⋅(2−2i)=(6−4)+(−4−6)i=2−10i So z1(z2z3)=(−1+i)⋅(2−10i)=(−2+10)+(2+10)i=8+12i…(3) Now, we take z1z2=(−1+i)⋅(3−2i)=(−3+2)+(3+2)i=−1+5i So (z1z2)z3=(−1+5i)⋅(2−2i)=(−2+10)+(10+2)i=8+12i…(4) From (3) and (4), we get the required result.