Solutions of Question 1 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Express as a single matrix [124][102201012][246]
[124][102201012][246]=[124][2+0+124+0+60+4+12]=[124][141016]=[14+20+64]=[98].
Express as a single matrix [1−23][2−15024−750]−[2−57]
[1−23][2−15024−750]−[2−57]=[2+0−21−1−4+155−8+0]−[2−57]=[−1910−3]−[2−57]=[−19−210+5−3−7]=[−2115−10]
Express as a single matrix [712921][345]+2[42]
[712921][345]+2[42]=[21+4+1027+8+5]+[84]=[3540]+[84]=[35+840+4]=[4344]
Express as a single matrix {[13−1−4]+[3−2−11]}[135246]
{[13−1−4]+[3−2−11]}[135246]=[1+33−2−1−1−4+1][135246]=[41−2−3][135246]=[4+212+420+6−2−6−6−12−10−18]=[61626−8−18−28]