Solutions of Question 8 of Exercise 3.5 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Find the volume of tetrahedron with the Vectors as coterminous edges →a=ˆi+2ˆj+3ˆk,→b=4ˆi+5ˆj+6ˆk,→c=7ˆj+8ˆk
The volume of tetrahedron is V=16[→u⋅→v×→w]⇒V=16|123456078|V=16⋅1(40−42)−4(16−21)⇒V=16(−2+20)=3 units.
Find the volume of tetrahedron with A(2,3,1),B(−1,−2,0), C(0.2,−5).D(0.1,−2) as vertices.
Position vector of A,→OA=2ˆi+3ˆj+ˆk
Position vector of B,→OB=−ˆi−2ˆj
Position vector of C,→OC=2ˆj−5ˆk
Position vector of D,→OD=ˆj−2ˆk
We find the edges vectors →a=→AB=→OB−→OA=(−ˆi−2ˆj)−(2ˆi−3ˆj+ˆk)⇒→a=−3ˆi−5ˆj−ˆk→b=→AC=→OC−→OA=2ˆj−5ˆk−(2ˆi+3ˆj+ˆk)∴→b=2ˆi−ˆj−6ˆk→c=→AD=→OD−→OA=ˆj−2ˆk−(2ˆi+3ˆj+ˆk)⇒→c=−2ˆi−2ˆj−3ˆk The volume of tetiahedron is: V=16|−3−5−1−2−1−6−2−2−3|V=16[−3(3−12)+5(6−12)−1(4−2)]=16[27−30−2]⇒V=−56 units. Volume can not he negative, so V:56 units cube.