Solutions of Question 4 & 5 of Review Exercise 10 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Prove the identity sin2θ2=sinθtanθ22sin2θ2=sinθtanθ22.
R.H.S.=sinθtanθ22=sinθsinθ22cosθ2=2sinθ2cosθ2sinθ22cosθ2=sin2θ2=L.H.S.
Prove the identity tanθtanθ2=secθ−1.
L.H.S.=tanθtanθ2sinθcosθsinθ2cosθ22sinθ2cosθ2cosθsinθ2cosθ2(∵sinθ=2sinθ2cosθ2)=2sin2θ2cosθR.H.S.=secθ−1=1cosθ−1=1−cosθcosθ=2sin2θ2cosθ(∵sin2θ2=1−cosθ2)L.H.S.=R.H.S