Question 9 and 10, Exercise 4.5

Solutions of Question 9 and 10 of Exercise 4.5 of Unit 04: Sequence and Series. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Question 9

Find the sum of the geometric series. $a_{1}=343, a_{4}=-1, r=-\frac{1}{7}$

Solution.

Given $a_{1}=343$, $a_{4}=-1$, $r=-\frac{1}{7}$
Let $S_n$ represents the sum of geometric series. Then $$ S_n =\frac{a_1-a_n r}{1-r}, \quad r\neq 1.$$ Thus \begin{align*} S_4 & =\frac{343-(-1)\left(-\frac{1}{7}\right)}{1+\frac{1}{7}} \\ &=\frac{\frac{2400}{7}}{\frac{8}{7}} \\ &=300. \end{align*} Hence $S_4=300$. GOOD

Question 10

Find the sum of the geometric series. $a_{3}=\frac{3}{4}, a_{6}=\frac{3}{32}, n=6$

Solution.

Given $a_3 = \frac{3}{4}$, $a_6 = \frac{3}{32}$ and $n = 6$.
Let $a_1$ be first term and $r$ be common ratio, then general term of geometric series is given as $$a_n=a_1 r^{n-1}$$. Take \begin{align*} &\frac{a_6}{a_3}=\frac{3/32}{3/4} \\ \implies & \frac{a_1 r^5}{a_1 r^2}=\frac{4}{32}\\ \implies & r^3=\frac{1}{8} \\ \implies & r^3=\left(\frac{1}{2} \right)^3\\ \implies & r=\frac{1}{2}. \end{align*} Now \begin{align*} & a_3 = a_1 r^{2}\\ \implies &\frac{3}{4} = a_1 \left(\frac{1}{2}\right)^{2} \\ \implies &\frac{3}{4} = a_1 \frac{1}{4}\\ \implies a_1 = 3. \end{align*} The formula to find the sum of $n$ terms of a geometric series is $$S_n = \frac{a_1 \left(1 - r^n\right)}{1 - r}, \quad r \neq 1.$$ Thus, \begin{align*} S_6 &= \frac{3 \left(1 - \left(\frac{1}{2}\right)^{6}\right)}{1 - \frac{1}{2}} \\ &= \frac{3 \left(1 - \frac{1}{64}\right)}{\frac{1}{2}} \\ &= \frac{3 \cdot \frac{63}{64}}{\frac{1}{2}} \\ &= \frac{189}{32} \end{align*} Hence, the required sum is $\dfrac{189}{32}$. GOOD m(

Go to

< Question 7 & 8 Question 11, 12 & 13 >