

COMSATS University Islamabad

Attock Campus

Department of Mathematics

Assignment # 01

Class: BCS (3 rd)
Subject: Calculus and Analytic Geometry
Instructor: Dr. Atiq ur Rehman

Due Date: 19-09-2024 (1140PST) **Course Code:** MTH104 **Marks:** 9

Note: Every student must submit a handwritten assignment.

Question # 1: Replace the comma between each pair of real numbers with < , > , or =.

i.-2, -5v. $\sqrt{5} - 2, 2 - \sqrt{5}$ ii. $0.66, \frac{2}{3}$ vi. $\frac{11}{20}, 0.55$ iii. $\pi, \frac{22}{7}$ vii. $1.618, \frac{1+\sqrt{5}}{2}$ iv. $\sqrt{2}, 1.42$ vii. $1.618, \frac{1+\sqrt{5}}{2}$

Question # 2: Rewrite the expressions without using symbols for absolute values.

$\pi - \frac{22}{2}$	iii. $ 3 - \pi $
	iv. $ -16-x^2 $
ii. $ 5 - x $ if $x > 8$.	

Question # 3: Solve the inequalities and express the solutions in terms of intervals.

i. $-1 < \frac{3-7x}{4} \le 7$ ii. $x^2 - 10x \le 200$ iv. $5 + \sqrt{x} < 1$

Question # 4: Use any software to sketch the graph of the following equation.

i.	y = 4x - 3	iii.	$4y = x^2$
ii.	$y = \sqrt{x} - 1$	iv.	$x^2 + y^2 = 16$

Question # 5: Find the largest subset of \mathbb{R} that can serve as the domain of the given function.

(i)
$$f(x) = \sqrt{4 - x^2}$$

(ii) $g(x) = \frac{4x + 8}{6x^2 + 13x - 5}$
(iii) $h(x) = \log (32 - 4x^2)$
(iv) $k(x) = \frac{1}{\sqrt{x - 1} + \sqrt{1 - x}}$

Question # 6: Sketch the graph and determine the domain and range of the given function.

a) $f(x) = \frac{2x}{|x|}$ b) g(x) = x + |x|c) $h(x) = \begin{cases} 3 & \text{if } x \text{ is an integer} \\ -1 & \text{if } x \text{ is not an integer} \end{cases}$ d) $k(x) = \begin{cases} -2x - 3 & \text{if } x \leq -1 \\ x^3 & \text{if } |x| < 1 \\ 2x & \text{if } x \geq 1 \end{cases}$