Lecture 07

Course Title: Calculus with Analytic Geometry

Course Code: MTH104

Objectives

The main aim of the lecture is to discuss:

- Right continuous and left continuous
- Limit of the function
 - o Limit at infinity or negative infinity
 - Limit as a infinity or negative infinity
- Theorem on limit

References:

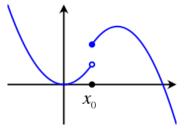
- Earl W. Swokowski, Calculus with Analytic Geometry, PWS Publisher, Boston, 1988.
- James Stewart, Calculus Early Transcendental, 6th Ed., Thomson Brooks/Cole, 2008.

Right Continuous and Left Continuous

Let *f* be a real valued function.

It is said to be right continuous at point *a* if $\lim f(x) = f(a)$ and

it is said to be left continuous at point *a* if $\lim f(x) = f(a)$.



 $x \rightarrow a +$

 $x \rightarrow a -$

Limit as a Infinity

Let f be a function defined on an interval that contains x = a, except possibly at x = a. Then we say that

 $\lim_{x \to a} f(x) = \infty$

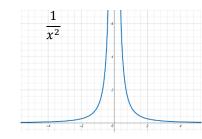
if for every number M > 0, there is some number $\delta > 0$ such that

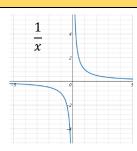
f(x) > M whenever $0 < |x-a| < \delta$.

Limit as a negative infinity can be defined in a similar way.

Examples:

(i) $\lim_{x \to 0} \frac{1}{x^2} = \infty$ (ii) $\lim_{x \to 0} \frac{-1}{x^2} = -\infty$ (iii) $\lim_{x \to 0} \frac{1}{x} = not \ exist$ (iv) $\lim_{x \to 1} \frac{1}{1-x} = not \ exist$



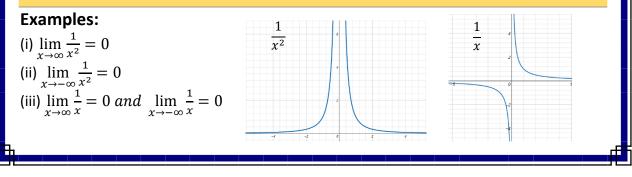


Limit at Infinity

A function $f: X \to Y$ is said to tend to limit *L* as $x \to \infty$, if for a real number $\varepsilon > 0$ however small, there exists a positive number *M* which depends upon ε such that distance

$$|f(x) - L| < \varepsilon$$
 when $x > M$.

This is written as $\lim_{x\to\infty} f(x) = L$. The limit at $-\infty$ can be defined in similar way.



Theorem on Limits:

P

(i)
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

(ii)
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

(iii)
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \quad \text{if } \lim_{x \to a} g(x) \neq 0$$

(iv)
$$\lim_{x \to a} [cf(x)] = c \left[\lim_{x \to a} f(x) \right]$$

(v)
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

Example:

If
$$\lim_{x \to 3} f(x) = 10$$
 then
$$\lim_{x \to 3} f^2(x) = ?.$$

If
$$\lim_{x \to 2} f(x) = 5$$
 and $\lim_{x \to 2} g(x) = 3$, then

$$\lim_{x \to 2} \frac{f(x) + 3}{1 - g^2(x)} = 2$$

Let's solve few questions.

P