

COMSATS University Islamabad

Attock Campus

Department of Mathematics

Assignment # 01

Class: BSM-IV Subject: Set Topology Instructor: Dr. Atiq ur Rehman **Due Date:** 18-02-2024

Course Code: MTH251

Marks: 20

Name:		Reg:	BSM
Question # 1: Define open and close any topological space (X, τ) .	ed sets. Prove th	aat $arphi$ and X are o	pen and closed sets in
Question # 2: Prove that in a discret	te topological sp	pace (X,\mathcal{D}) , every	γ subset of X is closed.

open intervals and union copology. (a) Write two o	en interval and closed interval. Let $\mathcal U$ represents the collection of open intervals of $\mathbb R$. The topology $(\mathbb R,\mathcal U)$ is called usual open set G_1 and G_2 which are not open intervals. (b) Prove that closed set in $(\mathbb R,\mathcal U)$. (c) Write two closed sets which are not closed.