OBJECTIVE

Mathematics

For Intermediate Students

[12]

Balient Features

- Summary
- Definitions
- MCQ'S
- Important S/Q
- Important L/Q

Written by:

Muhammad Shahbaz

MPhil. Mathematics (Scholar) 0314-3072609

OBJECTIVE

Mathematics

72

For Intermediate Students

Salient Features

- Summary
- Definitions
- MCQ'S
- Important S/Q
- Important L/Q

Written by:

Muhammad Shahbaz

MPhil. Mathematics (Scholar) 0314-3072609

shahbazjutt0314@gmail.com

DEDICATION

CONTENTS

Unit	Description	Page
1	Functions and Limits	1
2	Differentiation	25
3	Integration	52
4	Introduction to Analytic Geometry	74
5	Linear Inequalities and Linear Programming	97
6	Conic Section	107
7	Vectors	124

UNIT

1

Functions
and Limits

DEFINITIONS + SUMMARY

FUNCTION

Dependence of one quantity to another quantity is called *Function*. **OR** A function is a rule or correspondence, relating two sets in such a way that each element in the first set corresponds to one and only one element in the second set.

frample: The area "A" of a square depends on one of its sides "x" by the formula $A = x^2$, so we say that A is a function of x.

DEFINITION (FUNCTION-DOMAIN-RANGE)

A **Function** f from a set X to a set Y is a rule or a correspondence that assigns to each element x in X a unique element y in Y. The set X is called the **domain** of f. The set of corresponding elements y in Y is called the **range** of f.

NOTATION AND VALUE OF A FUNCTION

If a variable y depends on a variable x in such a way that each value of x determines exactly one value of y, then we say that "y is a function of x".

Swiss mathematician Euler (1707-1783) invented a symbolic way to write the statement "y is a function of x" as y = f(x), which is read as "y is equal to f of x".

The variable x is called the *independent variable* of f, and the variable y is called the *dependent variable* of f.

Note

Functions are often denoted by the letters such as f, g, h, F, G, H and so on.

TYPES OF FUNCTIONS

1. POLYNOMIAL FUNCTION

A function P of the form $P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + a_2 x^2 + a_1 x + a_0$ for all x, where the coefficients a_n , a_{n-1} , a_{n-2} , ..., a_2 , a_1 , a_0 are real numbers and the exponents are non-negative integers, is called a **polynomial function**. The domain and range of P(x) are, in general, subsets of real numbers.

frample: $P(x) = 2x^4 - 3x^3 + 2x - 1$ is a polynomial function of degree 4.

2. LINEAR FUNCTION

If the degree of a polynomial function is 1, then it is called a *linear function*. A linear function is of the form: f(x) = ax + b ($a \ne 0$), a, b are real numbers.

frample: f(x) = 3x + 4 or y = 3x + 4 is a **linear function**. Its domain and range are the set of real numbers.

3. IDENTITY FUNCTION

For any set X, a function $I: X \to X$ of the form $I(x) = x \forall x \in X$, is called an *identity function*. Its domain and range is the set X itself.

Example: if X = R, then I(x) = x, for all $x \in R$ is the identity function.

4. CONSTANT FUNCTION

Let X and Y be sets of real numbers. A function $C: X \to Y$ defined by C(x) = a, $\forall x \in X$, $a \in Y$ and fixed is called a *constant function*.

Frample: $C: R \to R$ defined by $C(x) = 2, \forall x \in R$ is a **constant function**

5. RATIONAL FUNCTION

A function R(x) of the form $\frac{P(x)}{Q(x)}$ where both P(x) and Q(x) are polynomial functions and $Q(x) \neq 0$, is called a *rational function*. The domain of a rational function R(x) is the set of all real numbers x for which $Q(x) \neq 0$.

Example:
$$\frac{x^2-2}{x-1}$$
, $\frac{2x^2-3x-3}{x^2+9}$

6. TRIGONOMETRIC FUNCTION

The functions $y = \sin x \cdot y = \cos x$, $y = \tan x$, $y = \csc x$, $y = \sec x$, $y = \cot x$ are called *Trigonometric Functions*.

DOMAIN & RANGE OF TRIGONOMETRIC FUNCTIONS

Function	Domain	Range
$y = \sin x$	Set of all Real Numbers $\mathbf{OR} - \infty \leq x \leq \infty$	$-1 \le y \le 1$
$y = \cos x$	Set of all Real Numbers $OR -\infty \le x \le \infty$	$-1 \le y \le 1$
$y = \tan x$	$R - \left\{ x x = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$ $\mathbf{OR} - \infty \le x \le \infty, x \ne \left(\frac{2n+1}{2}\right)\pi, n \in z$	Set of all Real Numbers $\mathbf{OR} - \infty \leq y \leq \infty$
$y = \cot x$	$R - \{x x = n\pi, n \in z\}$ $\mathbf{OR} - \infty \le x \le \infty, x \ne n\pi, n \in z$	Set of all Real Numbers $\mathbf{OR} - \infty \leq y \leq \infty$
$y = \sec x$	$R - \left\{ x x = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$ $\mathbf{OR} - \infty \le x \le \infty, x \ne \left(\frac{2n+1}{2}\right)\pi, n \in z$	$y \ge 1 \text{ or } y \le -1$
$y = \csc x$	$R - \{x x = n\pi, n \in z\}$ $\mathbf{OR} - \infty \le x \le \infty, x \ne n\pi, n \in z$	$y \ge 1 \text{ or } y \le -1$

7. Inverse Trigonometric Function

The functions $y = \sin^{-1} x$. $y = \cos^{-1} x$, $y = \tan^{-1} x$, $y = \csc^{-1} x$, $y = \sec^{-1} x$, $y = \cot^{-1} x$ are called *Inverse Trigonometric Functions*.

DOMAIN & RANGE OF INVERSE TRIGONOMETRIC FUNCTIONS

Function	Domain	Range
$y = \sin^{-1} x$	$-1 \le x \le 1$	Set of all Real Numbers
		$OR - \infty \le y \le \infty$
$y = \cos^{-1} x$	$-1 \le x \le 1$	Set of all Real Numbers
		$OR - \infty \le y \le \infty$
$y = \tan^{-1} x$	Set of all Real Numbers	$R - \left\{ y y = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$
	$OR - \infty \le x \le \infty$	(
		$\mathbf{OR} - \infty \le y \le \infty, y \ne \left(\frac{2n+1}{2}\right)\pi, n \in \mathbb{Z}$
$y = \cot^{-1} x$	Set of all Real Numbers	$R - \{y y = n\pi, n \in z\}$
	$OR - \infty \le x \le \infty$	$\mathbf{OR} - \infty \le y \le \infty, y \ne n\pi, n \in \mathbf{z}$
$y = \sec^{-1} x$	$x \ge 1 \text{ or } x \le -1$	$R - \left\{ y y = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$ $\mathbf{OR} - \infty \le y \le \infty, y \ne \left(\frac{2n+1}{2}\right)\pi, n \in z$
_1		D (1 5)
$y = \csc^{-1} x$	$x \ge 1 \text{ or } x \le -1$	$R - \{x x = n\pi, n \in z\}$ $\mathbf{OR} - \infty \le x \le \infty, x \ne n\pi, n \in z$

8. EXPONENTIAL FUNCTION

A function, in which the variable appears as exponent (power), is called an *exponential* function.

Example:
$$y = e^x$$
, $y = e^{ax}$, $y = 2^x$, $y = e^{x \ln 2}$ etc.

9. LOGARITHMIC FUNCTION

The functions $f(x) = log_a x$, where a > 0, $a \ne 1$ is called **Logarithmic Function** of x.

- (i) If a = 10, then we have $log_{10}x$ (written as log x) which is known as the **common** logarithm of x.
- (ii) If a = e, then we have $log_e x$ (written as ln x) which is known as the *natural* logarithm of x.

Note If
$$x = a^y \Leftrightarrow y = \log_a x$$

10. HYPERBOLIC FUNCTION

$\sinh x = \frac{e^x - e^{-x}}{2}$	$\operatorname{cosech} x = \frac{2}{e^x - e^{-x}}$
$\cosh x = \frac{e^x + e^{-x}}{2}$	$\operatorname{sech} x = \frac{2}{e^x + e^{-x}}$
$ tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} $	$\coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$

11.Inverse Hyperbolic Functions

The *inverse hyperbolic functions* are expressed in terms of natural logarithms.

$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right), \forall x$	$\operatorname{cosech}^{-1} x = \ln\left(\frac{1}{x} + \frac{\sqrt{1+x^2}}{ x }\right), x \neq 0$
$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right), x \ge 1$	$\operatorname{sech}^{-1} x = \ln\left(\frac{1}{x} + \frac{\sqrt{1 - x^2}}{x}\right), 0 < x \le 1$
$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), x < 1$	$ coth^{-1} x = \frac{1}{2} ln \left(\frac{x+1}{x-1} \right), x < 1 $

12.EXPLICIT FUNCTION

If "y" is easily expressed in terms of the independent variable "x", then "y" is called an *explicit function* of "x". Symbolically it can be written as y = f(x).

Frample: (i) $y = x^2 + 2x - 1$ (ii) y = x - 1 are explicit functions of x.

13.IMPLICIT FUNCTION

If x and y are so mixed up and y cannot be expressed in terms of the independent variable x, then y is called an *implicit function* of x. Symbolically it is written as f(x,y) = 0.

frample:- (i) $x^2 + xy + y^2 = 2$ (ii) $\frac{xy^2 - y + 9}{xy} = 1$ are implicit functions of x and y.

14. PARAMETRIC FUNCTIONS

Sometimes a curve is described by expressing both x and y as function of a third variable "t" or " θ " which is called a parameter. The equations of the type x = f(t) and y = g(t) are called **the parametric equations** of the curve.

Example: - The functions of the form:

- (i) $x = at^2, y = at$
- (ii) $x = a \cos \theta, y = a \sin \theta$

are called **parametric functions**. Here the variable t or θ is called parameter.

15.EVEN FUNCTION

A function f is said to be even if f(-x) = f(x), for every number x in the domain of f.

frample:
$$f(x) = x^2$$
 and $f(x) = \cos x$ are even functions of x .
Here $f(-x) = (-x)^2 = x^2 = f(x)$ and $f(-x) = \cos (-x) = \cos x = f(x)$

16.ODD FUNCTION

A function f is said to be odd if f(-x) = -f(x), for every number x in the domain of f.

frample:
$$f(x) = x^3$$
 and $f(x) = \sin x$ are odd functions of x .
Here $f(-x) = (-x)^3 = -x^3 = -f(x)$ and $f(-x) = \sin (-x) = -\sin x = -f(x)$

COMPOSITION OF FUNCTION

Let f be a function from set X to set Y and g be a function from set Y to set Z. The composition of f and g is a function, denoted by $g \circ f$, from X to Z and is defined by

$$(gof)(x) = g(f(x)) = gf(x)$$
, for all $x \in X$.

Note (i) In general, $gf(x) \neq fg(x)$.

(ii) We usually write ff as f^2 and fff as f^3 and so on.

INVERSE OF A FUNCTION

Let f be a one-one function from X onto Y. The inverse function of f denoted by f^{-1} , is a function from Y onto X and is defined by: $x = f^{-1}(y), \forall y \in Y$ if and only if y = f(x), $\forall x \in X$.

LIMIT OF A FUNCTION

Let a function f(x) be defined in an open interval near the number "a" (need not be at a). If, as x approaches "a" from both left and right side of "a", f(x) approaches a specific number "L" then "L", is called the **limit of** f(x) as x approaches a.

Symbolically it is written as:

$$\lim_{x \to a} f(x) = L \text{ read as "limit of } f(x), \text{ as } x \to a \text{ , is } L".$$

THEOREM ON LIMITS OF FUNCTION

Let f and g be two functions, for which $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then

Theorem 1: - The limit of the sum of two functions is equal to the sum of their limits.

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$$

Theorem 2: - The limit of the difference of two functions is equal to the difference of their limits.

$$\lim_{x\to a}[f(x)-g(x)]=\lim_{x\to a}f(x)-\lim_{x\to a}g(x)=L-M$$
 Theorem 3: - If k is any real number, then

$$\lim_{x \to a} [kf(x)] = k \lim_{x \to a} f(x) = kL$$

Theorem 4: - The limit of the product of the functions is equal to the product of their limits.

$$\lim_{x \to a} [f(x)g(x)] = [\lim_{x \to a} f(x)][\lim_{x \to a} g(x)] = LM$$

Theorem 5: - The limit of the quotient of the functions is equal to the quotient of their limits provided the limit of the denominator is non-zero.

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}$$

Theorem 6: - Limit of $[f(x)]^n$ where n is an integer.

$$\lim_{x \to a} [f(x)]^n = \left(\lim_{x \to a} f(x)\right)^n$$

LIMITS OF IMPORTANT FUNCTION

- 1. $\lim_{x \to a} \frac{x^n a^n}{x a} = na^{n-1}$, where n is an integer a > 0
- 2. $\lim_{x \to 0} \frac{\sqrt{x+a} \sqrt{a}}{x} = \frac{1}{2\sqrt{a}}$

- 3. (i) $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$ (ii) $\lim_{x \to 0} (1 + x)^{1/x} = e$ 4. (i) $\lim_{x \to 0} \frac{a^{x-1}}{x} = \log_e a$ (ii) $\lim_{x \to 0} \frac{e^{x-1}}{x} = \log_e e = 1$ 5. $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ (Where θ is measured in radian)

THE SANDWICH THEOREM

Let f, g and h be three functions such that $f(x) \le g(x) \le h(x)$ for all numbers x in some open interval $(\forall x \in (a, b))$ containing "c", except possibly at c itself.

If
$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = L$, then $\lim_{x \to c} h(x) = L$

CONTINUITY OF A FUNCTION

1. CONTINUOUS FUNCTION

A function f is said to be **continuous** at a number "c" if and only if the following three conditions are satisfied:

- (i) f(c) is defined.
- (ii) $\lim_{x \to c} f(x)$ exists
 - (iii) $\lim_{x \to c} f(x) = f(c)$

2. DISCONTINUOUS FUNCTION

If one or more of these three conditions fail to hold at "c", then the function f is said to be *discontinuous* at "c".

MCQ's

Choose the correct answer.

1	The term which are used to explain the relationship between the variables or quantities							
	are called							
a	Domain	b	Range	c	Function	d	Formula	
2	The term function was recognized by a German Mathematician							
a	Leibnitz	b	Newton	c	Euler	d	Cauchy	
3	The area A of a	squa	are depends on its					
a	sides	b	diagonals	c	radius	d	none	
4					g two sets in such a wone element in the sec			
a	Domain	b	Range	c	Function	d	Formula	
5	If y is the function	on c	of x , the mathematic	ally	it can be written as			
a	x = y	b	x = y(x)	c	y = f(x)	d	$y = x^{-1}$	
6	Which mathema	atici	an invented a sym	boli	c way to write the	stat	ement "y is the	
	function of x "				1 40			
a	Leibnitz	b	Newton	c	Euler	d	Cauchy	
7	TC. 1 41 C 41	J	c · c() 1	111	1 11 1	*8)		
7	If y is the function	on c	of x i.e. $y = f(x)$ th	en x	s is called			
a	Dependent	on o	Independent Independent	c	c is called constants	d	Both a & b	
						d	Both a & b	
	Dependent variable	b	Independent	С	constants	d	Both a & b	
a	Dependent variable	b	Independent variable	С	constants	d	Both a & b Both a & b	
a 8	Dependent variable If y is the function	b on o	Independent variable of x i.e. $y = f(x)$ the	c en y	constants v is called			
a 8	Dependent variable If y is the function Dependent variable	b on c	Independent variable of x i.e. $y = f(x)$ the Independent	en y	constants vis called constants			
8 a	Dependent variable If y is the function Dependent variable If y is the function	b on o	Independent variable of x i.e. $y = f(x)$ the Independent variable	en y	constants vis called constants			
8 a	Dependent variable If y is the function Dependent variable If y is the function $y = f(x)$	b on c b	Independent variable of x i.e. $y = f(x)$ the Independent variable of x , the mathematic	c en y c ally	constants v is called constants it can be written as	d	Both a & b	
a 8 a 9 a	Dependent variable If y is the function Dependent variable If y is the function $y = f(x)$	b on c b	Independent variable of x i.e. $y = f(x)$ the Independent variable of x , the mathematic $f: x \to y$	c en y c ally	constants v is called constants it can be written as	d	Both a & b	
a 8 a 9 a 10	Dependent variable If y is the function Dependent variable If y is the function y = f(x) If $f: x \rightarrow y$ be a Domain	b b b b fundamental b	Independent variable of x i.e. $y = f(x)$ th Independent variable of x , the mathematic $f: x \rightarrow y$ ction then x is called	c c c c c c c c c c c c c c c c c c c	constants y is called constants it can be written as $x = y(x)$	d	Both a & b Both a & b	
a8a9a10a	Dependent variable If y is the function Dependent variable If y is the function y = f(x) If $f: x \rightarrow y$ be a Domain	b b b b fundamental b	Independent variable of x i.e. $y = f(x)$ th Independent variable of x , the mathematic $f: x \to y$ ction then x is called Range	c c c c c c c c c c c c c c c c c c c	constants y is called constants it can be written as $x = y(x)$	d	Both a & b Both a & b	
a8a9a10a11	Dependent variable If y is the function Dependent variable If y is the function y = f(x) If $f: x \rightarrow y$ be a Domain If $f: x \rightarrow y$ be a	b b on c b fund b	Independent variable of x i.e. $y = f(x)$ the Independent variable of x , the mathematic $f: x \rightarrow y$ ction then x is called Range ction then y is called	c c ally c c c	constants v is called constants it can be written as $x = y(x)$ Co-domain	d	Both a & b Both a & b Both a and c	
a8a9a10a11a	Dependent variable If y is the function Dependent variable If y is the function y = f(x) If $f: x \rightarrow y$ be a Domain If $f: x \rightarrow y$ be a	b b on c b fund b	Independent variable of x i.e. $y = f(x)$ the Independent variable of x , the mathematic $f: x \rightarrow y$ ction then x is called Range ction then y is called Range	c c ally c c c	constants v is called constants it can be written as $x = y(x)$ Co-domain	d	Both a & b Both a & b Both a and c	

13	The volume V of a cube as a function of its base							
a	$A^{2/_{3}}$	b	2 <i>A</i>	c	$A^{3/2}$	d	4 <i>A</i>	
14	The parameter P	of	a square as a function	n o	f its area A is			
a	\sqrt{A}	b	$2\sqrt{A}$	c	$3\sqrt{A}$	d	$4\sqrt{A}$	
15	If a function is d	efir	ne on R (set of real n	uml	pers) then it is called			
a	Complex valued	b	Real Valued	c	Linear	d	none	
16	A function which	h is	defined by algebraic	c ex	pressions are called _		_ functions.	
a	Trigonometric	b	Hyperbolic	c	Inverse hyperbolic	d	Algebraic	
17	A function in wh	nich	variable appear as a	ın e	xponent is called	fu	nction.	
a	Hyperbolic	b	Exponential	c	Rational	d	None of these	
18	A function of the	e fo	$\operatorname{rm} I(x) = x, \forall x \in I$	X (X	(be any set) is called	1	function.	
a	Identity	b	Constant	c	Linear	d	Rational	
19	If $C: R \to R$ define	ne l	$\operatorname{by} C(x) = 2, \forall x \in \mathcal{L}$	R is	called			
a	Identity	b	Constant	c	Linear	d	Rational	
20	If the degree of polynomial function is 1 then it is called function.							
a	Identity	b	Constant	c	Linear	d	None of these	
21	$f(x) = 2x^4 - 3$	x^3	+2x-1 is a polynomial	omi	al function of degree			
a	4	b	3	c	2	d	1	
22	The domain & ra	ange	e of the polynomial	func	ction in general is			
a	Natural	b	Real numbers	c	Non-negative real	d	Positive real	
	numbers		41		numbers		numbers	
23	The domain and	ran	ge of identity functi	on i	545			
a	Natural	b	Real numbers	c	Non-negative real	d	Positive real	
	numbers		**		numbers		numbers	
24	Which one is con	nsta	nt function?					
a	f(x) = x	b	f(x) = cotx	c	f(x) = 5	d	None of these	
25	If $f(x) = x^2$, the	nen	domain of f is					
a	Set of all real	b	Set of all non-	c	Set of natural	d	None of these	
	numbers		negative numbers		numbers			
26	If $f(x) = x^2$, the	nen	range of f is					
a	Set of all real	b	Set of all non-	c	Set of natural	d	None of these	
							i	

27	If $f(x) = \frac{x}{x^2 - 4}$,	the	n domain of f is				
a	Set of all real	b	Set of all non-	c	Set of natural	d	Set of all real
	numbers		negative numbers		numbers		numbers except
							-2 & 2
28	If $f(x) = \frac{x}{x^2 - 4}$,	the	n range of f is				
a	Set of all real	b	Set of all non-	c	Set of natural	d	Set of all real
	numbers		negative numbers		numbers		numbers except
							-2 & 2
29	Let $f(x) = \sqrt{x^2}$	_ ($\frac{1}{9}$ then domain of f i	S			
a	All real	b	[3,+∞)	c	$(-\infty, -3]U[3, +\infty)$	d	(-∞, -3]
	numbers						
30	If $f(x) = x^2 +$	1, t	hen domain of f is				
a	Set of all real	b	Set of all non-	c	Set of natural	d	Set of all real
	numbers		negative numbers		numbers		numbers except
					4 4		-2 & 2
31	If $f(x) = \sqrt{x + }$	1 tł	nen domain of f is			/	
a	[−1,∞)	b	$(-\infty,\infty)$	c	[0,∞)	d	[-1,1]
32	If $f(x) = \sqrt{x + x}$	1 tł	nen range of f is				
a	R	b	$(-\infty,\infty)$	c	[0,∞)	d	[-1,1]
33	The range of $f(x)$	r) =	$=2+\sqrt{x-1}$	4			
a	(-1,∞)	b	[0,∞)	c	[2,∞)	d	[−2,∞)
34	Domain of sine f	func	ction is		naz		
a	All Real	b	$R - \left\{ x \mid x = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$	c	$R - \{x \mid x = n\pi, n \in z\}$	d	All natural
	Numbers						Numbers
35	Domain of cosin	e fi	inction is				
a	All Real	b	$R - \left\{ x x = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$	c	$R - \{x x = n\pi, n \in z\}$	d	All natural
	Numbers						Numbers
36	Domain of tange	nt f	unction is				
a	All Real	b	$R - \left\{ x x = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$	c	$R - \{x x = n\pi, n \in z\}$	d	All natural
	Numbers						Numbers
37	Domain of cotan	ger	nt function is				

a	All Real	b	$R - \left\{ x \mid x = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$	c	$R - \{x x = n\pi, n \in z\}$	d	All natural
	Numbers						Numbers
38	Domain of secan	ıt fu	nction is				
a	All Real	b	$R - \left\{ x \mid x = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$	c	$R - \{x x = n\pi, n \in z\}$	d	All natural
	Numbers						Numbers
39	Domain of cosec	ant	function is				
a	All Real	b	$R - \left\{ x x = \left(\frac{2n+1}{2}\right)\pi, n \in z \right\}$	c	$R - \{x x = n\pi, n \in z\}$	d	All natural
	Numbers						Numbers
40	The domain of <i>y</i>	' = :	$\sin^{-1} x$ is				
a	$-1 \le x \le 1$	b	All real numbers	c	$x \ge 1 \text{ or } x \le -1$	d	$0 < x < \pi$
41	The domain of y	=	$\cos^{-1} x$ is				
a	$-1 \le x \le 1$	b	All real numbers	c	$x \ge 1 \text{ or } x \le -1$	d	$0 < x < \pi$
42	The domain of <i>y</i>	=	$\tan^{-1} x$ is				
a	$-1 \le x \le 1$	b	All real numbers	c	$x \ge 1 \text{ or } x \le -1$	d	$0 < x < \pi$
43	The domain of y	A	$\cot^{-1} x$ is		4 4	4	
a	$-1 \le x \le 1$	b	All real numbers	c	$x \ge 1 \text{ or } x \le -1$	d	$0 < x < \pi$
44	The domain of <i>y</i>	→	$\sec^{-1} x$ is		76		
a	$-1 \le x \le 1$	b	All real numbers	c	$x \ge 1 \text{ or } x \le -1$	d	$0 < x < \pi$
45	The domain of y	=	$cosec^{-1} x$ is				
a	$-1 \le x \le 1$	b	All real numbers	c	$x \ge 1 \text{ or } x \le -1$	d	$0 < x < \pi$
46	sinh x =		100	5	i 4 i		
a	$e^x - e^{-x}$	b	$e^x + e^{-x}$	c	$e^{x}-e^{-x}$	d	2
47	2		2		$e^x + e^{-x}$		$e^x + e^{-x}$
47	$ \cosh x = \frac{x}{1 - x} $	1	· * · · · · · · · · ·		. r r	1	2
a	$\frac{e^x - e^{-x}}{2}$	b	$\frac{e^x + e^{-x}}{2}$	С	$\frac{e^x - e^{-x}}{e^x + e^{-x}}$	d	$\frac{2}{e^x + e^{-x}}$
48	tanh x =						
a	$e^x - e^{-x}$	b	$\frac{e^x + e^{-x}}{2}$	c	$e^x - e^{-x}$	d	2
	2				$\frac{e^x - e^{-x}}{e^x + e^{-x}}$		$\overline{e^x + e^{-x}}$
49	If $y = log_a x$ an	d a	= 10 then y is kno	wn	as		
a	Common	b	Natural	c	Exponential	d	None of these
	logarithm		logarithm		function		

50	If $y = log_a x$ and $a = e$ then y is known as								
a	Common	b	Natural	c	Exponential	d	None of these		
	logarithm		logarithm		function				
51	If y is easily expressed in terms of independent variable x, then y is calledfunction.								
a	Implicit	b	Explicit	c	Parametric	d	Even		
52	Symbolically ex	plic	it function written a	S					
a	y = f(x)	b	f(x,y)=0	c	y = f(-x)	d	None of these		
53	$y = x^2 + 2x -$	- 1	is example of	_ fu	nction				
a	Implicit	b	Explicit	c	Parametric	d	Even		
54	If x and y are so	o n	nixed up and y cann	ot 1	be expressed in term	s of	the independent		
	variable x , then y	is?	called a/an fun	ctic	n.				
a	Implicit	b	Explicit	c	Parametric	d	Even		
55	Symbolically im	plic	cit function written a	S	9				
a	y = f(x)	b	f(x,y)=0	c	y = f(-x)	d	None of these		
56	$x^2 + xy + y^2$	=	2 is example of	:	function.				
a	Implicit	b	Explicit	c	Parametric	d	Even		
57	The functions of	the	form $x = at^2$, y	= c	at is known as	func	ction.		
a	Implicit	b	Explicit	c	Parametric	d	Even		
58	The equations x	= 0	acost, y = asi <mark>nt</mark> rep	ores	ents				
a	Circle	b	Line	c	Parabola	d	Hyperbola		
59	The equations x	= 0	at^2 , $y = 2at$ represe	nts	4				
a	Circle	b	Line	c	Parabola	d	Hyperbola		
60	$\cosh^2 - \sinh^2 x$	= _			nac				
a	$\sinh^2 x$	b	0	c	1	d	2		
61	$sinh^{-1}x =$								
a	$ln\left(x+\sqrt{x^2+1}\right)$	b	$\ln\left(x+\sqrt{x^2-1}\right)$	c	$\frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$	d	$\frac{1}{2}ln\left(\frac{x+1}{x-1}\right)$		
62	$\cosh^{-1} x$								
a	$ln\left(x+\sqrt{x^2+1}\right)$	b	$\ln\left(x+\sqrt{x^2-1}\right)$	c	$\frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$	d	$\frac{1}{2}ln\left(\frac{x+1}{x-1}\right)$		
63	tanh ⁻¹ x								
a	$ln\left(x+\sqrt{x^2+1}\right)$	b	$\ln\left(x+\sqrt{x^2-1}\right)$	c	$\frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$	d	$\frac{1}{2}ln\left(\frac{x+1}{x-1}\right)$		

64	$coth^{-1} x$					
a	$ln\left(x+\sqrt{x^2+1}\right)$	b	c	$\frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$	d	$\frac{1}{2}ln\left(\frac{x+1}{x-1}\right)$
65	sech ⁻¹ x			I		
a	$ln\left(\frac{1}{x} + \frac{\sqrt{1-x^2}}{x}\right)$	b	c	$\frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$	d	$\frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)$
66	cosech ^{−1} x					
a	$ln\left(\frac{1}{x} + \frac{\sqrt{1-x^2}}{x}\right)$	b	С	$\frac{1}{2}ln\left(\frac{1+x}{1-x}\right)$	d	$\frac{1}{2}\ln\left(\frac{x+1}{x-1}\right)$
67	$If f(x) = x^3 - 1$	$2x^2 + 4x + 1 $ then $f(-$	2) :	=		
a	-1	b 2	c	-25	d	-23
68	$If f(x) = 2^x - 1$	x, then $f(0) =$				
a	1	b 0	c	-1	d	3
69	If $f(x) = \sqrt{x - x}$	12 then $f(16) =$				
a	16	b 12	c	28	d	2
70	· · · ·	$\frac{1}{4}$ then $f(x^2 + 4) =$. 4.4		
a	$\sqrt{x^2+4}$	b $\sqrt{x^2+8}$	С	$\sqrt{x^2-8}$	d	x - 8
71	$If f(x) = x^{2/3} +$	+ 6 then f(0) =		7		
a	1	b 4	c	6	d	0
72	$If f(x) = x^2 - 1$	x then $f(-2) = \underline{\hspace{1cm}}$		7		
a	2	b 0	c	6	d	-6
73	If f(x) = 2x +	5 then $f(2) = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$: 1:		
a	1	b 9	С	-9	d	10
74	$If f(x) = 2x^2 +$	+4x + 2 then f(-2) =	_	-		
a	0	b 1	c	2	d	-2
75		equation $x = a \cos t$, y				
a	$x^2 + y^2 = a^2$			_ ~		$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
76	The parametric of	equation $x = at^2$, $y = 2$	2at	represents parametric	eqı	ation
a	$x^2 + y^2 = a^2$			_ ~		$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
77	The parametric 6	equation $x = a \cos \theta$, y	$r = \overline{k}$	θ sin θ represents the	equ	ation

a	$x^2 + y^2 = a^2$	b	$y^2 = 4ax$	c	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	d	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$		
78	The parametric equation $x = a \sec \theta$, $y = b \tan \theta$ represents the equation								
a	$x^2 + y^2 = a^2$	b	$y^2 = 4ax$	c	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	d	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$		
79	The function $y =$	$= a^{3}$	is called func	tior	1				
a	Algebraic	b	Trigonometric	c	Exponential	d	Identity		
80	A function f is sa	aid 1	to be if $f(-x)$	=	f(x).				
a	Implicit	b	Explicit	c	Parametric	d	Even		
81	A function f is sa	aid 1	to be if $f(-x)$	= -	-f(x).				
a	Implicit	b	Explicit	c	Odd	d	Even		
82	$If f(x) = \sin x$	the	en f(x) is						
a	Even function	b	Odd function	c	Rational function	d	None of these		
83	$If f(x) = \cos x$	th.	en $f(x)$ is						
a	Even function	b	Odd function	c	Rational function	d	None of these		
84	The function $f(z)$	x) =	$=(x+2)^2$ is		. 4 4	4			
a	Even function	b	Odd function	c	Both even & odd	d	Neither even		
	4						nor odd		
85	$If f(x) = x^3 - $	sin	then $f(x)$ is						
a	Constant	b	Even function	c	Odd function	d	Neither even		
	function						nor odd		
86	$If f(x) = \frac{3x}{x^2 + 1} t$	hen	<i>f</i> (<i>x</i>) is		1				
a	Constant	b	Even function	c	Odd function	d	Neither even		
	function						nor odd		
87	$f(x) = \sin x + c$	cos:	x is function.						
a	Odd	b	Even	c	Both even & odd	d	Neither even		
							nor odd		
88	$f(x) = x^{2/3}$ is _		function						
a	Odd	b	Even	c	Both even & odd	d	Neither even		
							nor odd		
89	If f(x) = xcotx	is	function.						
a	Constant	b	Quadratic	c	Even	d	Odd		

90	If $f(x) = x^2 + \cos x$ then $f(x)$ is							
a	Constant	b	Even function	c	Odd function	d	Neither even	
	function						nor odd	
91	If $f(x) = sinx + cosx$ then $f(x) + f(-x) = $							
a	2sinx	b	2cosx	c	-2cosx	d	0	
92	If $f: x \to y$ be a	fun	ction then inverse of	<i>f</i> i	s define as			
a	$f^{-1}(y) = x$	b	y = f(x)	c	$f^{-1}(x) = y$	d	None of these	
93	Only funct	ion	will have its inverse	;.				
a	On-to	b	In-to	c	Bijective	d	None of these	
94	If f(x) = -2x - 2x - 2x - 2x - 2x - 2x - 2x - 2	⊦ 6,	then $f^{-1}(x) = $	_				
a	$\frac{2-x}{}$	b	$\frac{2}{6-x}$	c	$\frac{6-x}{2}$	d	2x-6	
0.5	6				2			
95			then $f^{-1}(x) = \underline{\hspace{1cm}}$					
a	$\frac{x+8}{2}$	b	$\left \frac{2}{8-x} \right $	С	$\frac{8-x}{2}$	d	$\frac{x-8}{2}$	
96	$f \circ f^{-1}(x)$ is	1			2	-/		
a	Constant	A A	Identity	c	Even	d	Exponential	
97	If "f" be a biject		function then $f(f^{-1})$	(x)) equal to			
a	x	W	f(x)		$f^{-1}(x)$	d	None of these	
98	A rule that assig				unique element $y \in Y$	Y is		
	from.				7			
a	X to X	b	Y to Y	c	X to Y	d	Y to X	
99	If y is image of z	x ur	der the function f ,	we v	write it as			
a	x = f(x)	b	$y \neq f(x)$	c	y = f(x)	d	y = x	
100	The composition	of	two functions f and	<i>g</i> i	s denoted by			
a	gf(x)	b	(gof)x	c	$g \times f$	d	Both a and b	
101	If f(x) = sinx a	and	$g(x) = \sin^{-1} x \text{ then}$	n go	f(x) is			
a	sinx	b	$sin^{-1}x$	c	x	d	None of these	
102	If f(x) = 2x +	1 ar	$\int_{1}^{1} dg(x) = x^2 - 1 \text{ th}$	en j	fg(x) is		I.	
a	$x^4 - 2x^2$	b	4x + 3	c	$4x^2 + 4x$	d	$2x^2 - 1$	
103	$If f(x) = 2x + \frac{1}{2}$	1 ar	$\int_{1}^{1} dg(x) = x^2 - 1 \text{ th}$	ien į	$g^2(x)$ is			
a	$x^4 - 2x^2$	b	4x + 3	c	$4x^2 + 4x$	d	$2x^2 - 1$	

104	If $f(x) = 2x + 1$ and $g(x) = x^2 - 1$ then $gf(x)$ is							
a	$x^4 - 2x^2$	b	4x + 3	c	$4x^2 + 4x$	d	$2x^2 - 1$	
105	If f(x) = 2x +	1 ar	$\operatorname{ad} g(x) = x^2 - 1 \operatorname{th}$	en j	$f^2(x)$ is			
a	$x^4 - 2x^2$			С	$4x^2 + 4x$	d	$2x^2 - 1$	
106	If $f(x) = \frac{1}{x^2}$ then	n f	of =					
a	x^2	b	x^4	c	$\frac{1}{x^4}$	d	1	
107	If $P(x)$ be a poly	yno	mial function then $\lim_{x \to a}$	m <i>P</i> →c	(x) =			
a	P(x)	b	P(c)	c	cP(x)	d	None of these	
108				rigl	nt side of " a ", $f(x)$ a	ppr	oaches a specific	
	number "L" then					_		
a	Inverse of	b	Domain of $f(x)$	С	Range of $f(x)$	d	Limit of $f(x)$	
100	f(x)							
109	If <i>p</i> be a positive	rat	ional number and x^i	p is	defined, then $\lim_{x\to\infty} \frac{a}{x^p}$	is e	qual to	
a	p	b	x	c	∞	d	0	
110	$ \lim_{x \to a} \frac{x^n - a^n}{x - a} = $		+		1.49			
a	a^{n-1}		na^{n-1}	С	na	d	1	
111	$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n =$	=						
a	1	b	e	c	n	d	∞	
112	$\lim_{x \to 0} (1+x)^{1/x} =$	=	Cha	5	145			
a	1	b	e	c	n	d	∞	
113	$\lim_{x \to 0} \frac{a^x - 1}{x} = \underline{\hspace{1cm}}$		**					
a	$\log a$	b	$\log_a e$	c	$\log_e a$	d	1	
114	$\lim_{x \to 0} \frac{e^x - 1}{x} = \underline{\hspace{1cm}}$							
a	$\log a$	b	$\log_a e$	c	$\log_e a$	d	1	
115	$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \underline{\hspace{1cm}}$	(where θ is measured	lin	radian)			
a	е	b	-1	c	1	d	0	
116	$\lim_{x\to\infty}(e^x)=\underline{\hspace{1cm}}$	-						

a	1	b	e	c	n	d	∞
117	$\lim_{x \to \infty} \frac{1}{x} = \underline{\hspace{1cm}}$						
a	∞	b	1	c	0	d	-1
118	$\lim_{h\to 0} (1+2h)^{1/h}$	=_					
a	e^2	b	е	c	0	d	1
119	$\lim_{\theta \to 0} \frac{\sin 7 \theta}{\theta} = \underline{\hspace{1cm}}$		-				
a	1	b	7	c	0	d	e
120	$\lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^n =$:	4				
a	1	b	e	c	n	d	e^{-1}
121	$\lim_{n\to\infty} \left(1 + \frac{1}{3n}\right)^n$	=_	7				
a	e^2	b	e^3	С	$e^{1/_{3}}$	d	$\frac{1}{e^3}$
122	$\lim_{x \to 1} \frac{x^3 - x}{x - 1} = \underline{\hspace{1cm}}$	4			1 46		
a	3	b	2	c	1	d	0
123	$\lim_{\theta \to 0} \frac{1 - \cos p\theta}{1 - \cos q\theta}$		•				
a	$\frac{p^2}{q^2}$	b	$\frac{p}{q}$	c	0	d	1
124	$\lim_{x \to 0} \frac{\sin ax}{\sin bx} =$		Sha	h	hưż		
a	$\frac{b}{a}$	b	$\frac{a}{b}$	С	$\frac{a^2}{b^2}$	d	$\frac{b^2}{a^2}$
125	$\lim_{n \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2} = 1$				<i>D</i> ²		a ²
a	$2\sqrt{2}$	b	$\frac{1}{2\sqrt{2}}$	c	$\sqrt{2}$	d	∞
126	$\lim_{n\to 2} \frac{x-2}{\sqrt{x}-\sqrt{2}} = 1$						
a	$2\sqrt{2}$	b	$\frac{1}{2\sqrt{2}}$	c	$\sqrt{2}$	d	∞

127	$\lim_{\theta \to 0} \frac{\sin^2 \theta}{\theta} = \underline{\hspace{1cm}}$		-					
a	∞	b	0	c	1	d	е	
128	$ \lim_{x \to a} \frac{x^3 - a^3}{x - a} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		_					
a	∞	b	$3a^2$	c	$2a^2$	d	2 <i>a</i>	
129	$\lim_{x \to a} \frac{x^2 - a^2}{x - a} = \underline{\hspace{1cm}}$							
a	∞	b	$3a^2$	c	$2a^2$	d	2 <i>a</i>	
130	$ \lim_{x \to 0} \frac{x}{\sin 2x} = \underline{\qquad} $		A					
a	2	b	$\frac{1}{2}$	c	$-\frac{1}{2}$	d	-2	
131	$ \lim_{x \to 0} \frac{x}{\tan x} = \underline{\qquad} $				•			
a	∞	b	0	c	1	d	a	
132	A function f is said to be <i>continuous</i> at a number " c " if							
a	<i>f</i> (<i>c</i>) is	b	$\lim_{x \to c} f(x)$ exists	c	$\lim_{x \to c} f(x) = f(c)$	d	All of these	
	defined.							
133	A function f is sa	aid 1	to be discontinuous	at a				
a	f (c) is	b	$\lim_{x\to c} f(x) \text{ exists}$	С	$\lim_{x \to c} f(x) \neq f(c)$	d	None of these	
	defined.		Y					
134	$f(x) = 3x^2 - 5x$	<i>x</i> +	5 is continuous at	i				
a	2	b	3	c	-2	d	Set of real	
			Sna		naz		numbers	
135	The function $f(x)$	r) =	$=\frac{x}{x^2-4}$ is discontinuo	ous a	at:			
a	0	b	1	c	<u>+</u> 2	d	<u>±</u> 1	
136	Let f , g and h be	e th	ree functions such th	at f	$g(x) \le g(x) \le h(x)$) fo	r all numbers x in	
	some open interv	/al	$(\forall x \in (a,b))$ contains	ning	g "c", except possibly	at c	c itself is called	
a	Quotient	b	Sandwich	c	Limit Theorem	d	None of these	
	Theorem		Theorem					
137	$If f(x) = \frac{x^2 - 9}{x - 3} t$	her	$\lim_{x \to -3} f(x) =$					
a	-3	b	∞	c	0	d	3	

138	If $f(x) = x - 5 $ then $\lim_{x \to 5} f(x) =$						
a	0 b	∞ ∞	c	1	d	-1	
139	If $f(x) = \begin{cases} 2x+1 & \text{if } 0 \le x \le 2\\ 7-x & \text{if } 2 < x < 4 \end{cases}$ then $f(2) =$						
a		3	c	4	d	5	
140	If $f(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ c+2 & \text{if } x > -1 \end{cases}$ and $\lim_{x \to -1} f(x)$ exists then $c = \underline{\hspace{1cm}}$						
a	2 b	-2	С	1	d	-1	

MCQ's Answers Key

1	2	3	4	5	6	7	8	9	10
С	a	a	c	С	c	b	a	d	a
11	12	13	14	15	16	17	18	19	20
b	c	С	d	ь	d	b	a	b	c
21	22	23	24	25	26	27	28	29	30
a	b	b	c	a	b	d	a	c	a
31	32	33	34	35	36	37	38	39	40
a	c	c	a	a	b	c	b	c	a
41	42	43	44	45	46	47	48	49	50
a	b	b	c	c	a	b	c	a	b
51	52	53	54	55	56	57	58	59	60
b	a	b	a	b	a	c	a	c	c
61	62	63	64	65	66	67	68	69	70
a	b	c	d	a	b	d	b	d	b
71	72	73	74	75	76	77	78	79	80
c	c	b	c	a	b	c	d	c	d
81	82	83	84	85	-86	87	88	89	90
c	b	a	d	c	c	d	b	С	b
91	92	93	94	95	96	97	98	99	100
b	a	c	c	c	b	a	d	c	d
101	102	103	104	105	106	107	108	109	110
c	d	a	c	b	b	b	d	d	b
111	112	113	114	115	116	117	118	119	120
b	b	b	d	c	d	c	a	b	d
121	122	123	124	125	126	127	128	129	130
С	b	a	b	b	a	b	b	d	b
131	132	133	134	135	136	137	138	139	140
c	d	c	d	c	b	c	a	d	d

IMPORTANT SHORT QUESTIONS

- 1. What is function?
- 2. If $f(x) = x^3 2x^2 + 4x 1$ then find (i) $f\left(\frac{1}{x}\right)$ (ii) f(1) (iii) f(1+x)
- 3. Find domain and range of $f(x) = x^2$
- **4.** Find domain and range of $f(x) = \frac{x}{x^2-4}$
- 5. Find domain and range of $f(x) = \sqrt{x^2 9}$
- **6.** Define a polynomial function of degree n.
- 7. Define Linear Function. Give example.
- **8.** Define Identity Function with example.
- **9.** Define Constant Function. Give one example.
- 10. Define Rational Function. Give example.
- 11. Define Exponential Function. Give example.
- **12.** What is Implicit Function? Give example.
- 13. What is Explicit Function? Give example.
- **14.** Define Even Function. Give one example.
- **15.** Define Odd Function. Give example.
- 16. Show that the parametric equation $x = a \cos t$, $y = a \sin t$ represents the equation of circle $x^2 + y^2 = a^2$
- 17. Prove the identity $\cosh^2 x \sinh^2 x = 1$
- **18.** Prove the identity $\cosh^2 x + \sinh^2 x = \cosh 2x$
- 19. Determine whether the given function $f(x) = \frac{3x}{x^2 + 1}$ is even or odd.
- **20.** Determine whether the given function f(x) = sinx + cosx is even or odd.
- **21.** If $f(x) = x^2 x$ then find (i) f(x 1) (ii) f(-2)
- 22. For the function $f(x) = \sqrt{x+4}$, find (i) f(x-1) (ii) $f(x^2+4)$

- 23. Find $\frac{f(a+h)-f(a)}{h}$ and simplify where f(x) = 6x 924. Find $\frac{f(a+h)-f(a)}{h}$ and simplify where f(x) = sinx25. Find $\frac{f(a+h)-f(a)}{h}$ and simplify where f(x) = cosx
- **26.** Express perimeter **P** of a square as a function of its area **A**.
- 27. Express the area A of a circle as a function of its circumference C.
- **28.** Express the volume **V** of a cube as a function of its base.
- **29.** Find domain and range of $f(x) = \sqrt{x^2 4}$
- **30.** Find domain and range of $f(x) = \sqrt{x+1}$
- **31.** Find domain and range of f(x) = |x 3|
- 32. Given $f(x) = x^3 ax^2 + bx + 1$, if f(2) = -3 and f(-1) = 0. Find the values of a and
- 33. Show that $x = at^2$, y = 2at represents parametric equation of parabola $y^2 = 4ax$.
- **34.** Show that the parametric equation $x = a \cos \theta$, $y = b \sin \theta$ represents the equation of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

35. Show that the parametric equation $x = a \sec \theta$, $y = b \tan \theta$ represents the equation of hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

- **36.** Prove the identity sinh2x = 2sinhx coshx
- **37.** Prove the identity $\operatorname{sech}^2 x = 1 \tanh^2 x$
- **38.** Determine whether the given function $f(x) = x^3 + x$ is even or odd.
- **39.** Determine whether the given function $f(x) = x\sqrt{x^2 + 5}$ is even or odd.
- **40.** Check whether the given function $f(x) = x^{2/3} + 6$ is even or odd.
- **41.** Determine whether the given function $f(x) = \frac{x^3 x}{x^2 + 1}$ is even or odd.
- **42.** For any real valued function 'f' and 'g' defined by f(x) = 2x + 1, $g(x) = x^2 1$. Find (i) $f \circ g(x)$ (ii) $g \circ f(x)$ (iii) $f^2(x)$
- **43.** If f(x) = 2x + 1 then find $f^{-1}(x)$.
- **44.** Without finding inverse, state domain & range of f^{-1} when $f(x) = 2 + \sqrt{x-1}$
- **45.** If f(x) = 2x + 1, $g(x) = \frac{3}{x-1}$, find $f \circ g(x)$.
- **46.** For the function $f(x) = \sqrt{x+1}$, $g(x) = \frac{1}{x^2}$ find (i) $f \circ g(x)$ (ii) $g \circ f(x)$
- 47. For the function $f(x) = \frac{1}{\sqrt{x-1}}$, $g(x) = \frac{1}{x^2}$ find (i) $f \circ g(x)$ (ii) $g \circ f(x)$
- **48.** For the function $f(x) = 3x^4 2x^2$, $g(x) = \frac{2}{\sqrt{x}}$ find (i) $f \circ g(x)$ (ii) $g \circ f(x)$
- **49.** For the function $f(x) = \sqrt{x-1}$, find $f \circ f(x)$.
- **50.** If f(x) = 2x + 1, $g(x) = x^2 1$, find gof(x).
- **51.** If $f(x) = \frac{1}{\sqrt{x-1}}$, $g(x) = (x^2 + 1)^2$ find (i) $f \circ g(x)$ (ii) $g \circ f(x)$ (iii) $f \circ f(x)$
- **52.** For any real valued function of $g(x) = \frac{1}{x^2}$, find $g \circ g(x)$
- **53.** For real valued function of $f(x) = 3x^3 + 7$, find $f^{-1}(x)$.
- **54.** If f(x) = -2x + 8 then find $f^{-1}(x)$ and $f^{-1}(-1)$
- **55.** If $f(x) = (-x + 9)^3$ then find $f^{-1}(x)$
- **56.** Without finding inverse, state domain & range of f^{-1} when $f(x) = \frac{1}{x+3}$
- 57. Without finding inverse, state domain & range of f^{-1} when $f(x) = \frac{x-1}{x-4}$, $x \neq 4$.
- **58.** Without finding inverse, state domain & range of f^{-1} when $f(x) = (x-5)^2$, $x \ge 5$.
- **59.** Prove that $\lim_{x \to 0} \frac{\sqrt{x+a} \sqrt{a}}{x} = \frac{1}{2\sqrt{a}}$
- **60.** Evaluate $\lim_{x \to 3} \frac{x-3}{\sqrt{x} \sqrt{3}}$
- **61.** Evaluate $\lim_{x \to \infty} \frac{5x^4 10x^2 + 1}{-3x^3 + 10x^2 + 50}$
- **62.** Evaluate $\lim_{x \to +\infty} \frac{2-3x}{\sqrt{3+4x^2}}$
- **63.** Evaluate $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$
- **64.** State Sandwich Theorem.
- **65.** Evaluate $\lim_{\theta \to 0} \frac{1 \cos \theta}{\theta}$
- **66.** Evaluate $\lim_{x \to -2} \frac{2x^3 + 5x}{3x 2}$

- 67. Evaluate
- **68.** Evaluate
- **69.** Evaluate
- $\lim_{x \to a} \frac{x^n a^n}{x^m a^m}$ **70.** Evaluate
- Lim sinx° **71.** Evaluate
- $\lim_{\theta \to 0} \frac{1-\cos\theta}{\theta}$ **72.** Evaluate
- $\lim_{x \to \pi} \frac{\sin x}{\pi x}$ **73.** Evaluate
- $\lim_{x \to 0} \frac{\sin ax}{\sin bx}$ **74.** Evaluate
- **75.** Evaluate
- **76.** Evaluate
- $\lim_{x \to 0} \frac{1 \cos x}{\sin^2 x}$ 77. Evaluate
- **78.** Express the limit $\lim_{x\to 0} (1+3x)^{2/x}$ in terms of e.
- 79. Express the limit $\lim_{x\to 0} (1+2x^2)^{1/x^2}$ in terms of e.
- $\lim_{h\to 0} (1-2h)^{1/h}$. 80. Evaluate
- $\lim_{x\to\infty} \left(\frac{x}{1+x}\right)^x$ 81. Evaluate
- 82. Define Left Hand Limit & Right Hand Limit.
- 83. Give three conditions for a function f(x) to be continuous at a number 'c'.
- 84. What is Discontinuous Function? Give any example and sketch graphically
- **85.** Discuss continuity of $g(x) = \frac{x^2 9}{x 3}$ at x = 3.
- **86.** If $f(x) = 2x^2 + x 5$ then find left hand and right hand limit of f(x) at x = 1
- 87. If f(x) = |x 5| then find left hand and right hand limit of f(x) at x = 5.
- 88. Discuss continuity of f(x) at x = 2 when $f(x) = \begin{cases} 2x + 5 & \text{if } x \le 2 \\ 4x + 1 & \text{if } x > 2 \end{cases}$
- 89. If $f(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ c+2 & \text{if } x > -1 \end{cases}$ find c so that $\lim_{x \to -1} f(x)$ exist.
- **90.** Find the value of m, such that function is continuous at x = 3 if $f(x) = \begin{cases} mx & \text{if } x < 3 \\ x^2 & \text{if } x > 3 \end{cases}$

IMPORTANT LONG QUESTIONS

- 1. For the real valued function If $f(x) = (-x + 9)^3$, find (i) $f^{-1}(x)$ (ii) $f^{-1}(-1)$ and verify that $f(f^{-1}(x)) = f^{-1}(f(x)) = x$
- 2. Evaluate $\lim_{x\to 0} \frac{a^{x}-1}{x} = \log_e a$
- $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ **3.** Prove that
- **4.** If θ is measured in radian then prove that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$
- **5.** Evaluate $\lim_{x \to 0} \frac{\sec x \cos x}{x}$
- **6.** Evaluate $\lim_{\theta \to 0} \frac{1 \cos p\theta}{1 \cos q\theta}$ **7.** Evaluate $\lim_{\theta \to 0} \frac{\tan \theta \sin \theta}{\sin^3 \theta}$

- 8. Express the limit in terms of e; $\lim_{x \to 0} \frac{e^{1/x} 1}{e^{1/x} + 1}$; x < 09. Express the limit in terms of e; $\lim_{x \to 0} \frac{e^{1/x} 1}{e^{1/x} + 1}$; x > 010. Discuss continuity of f(x) at x = 3 when $f(x) = \begin{cases} x 1 & \text{if } x < 3 \\ 2x + 1 & \text{if } x \ge 3 \end{cases}$
- 11. Discuss the continuity of f(x) at x = 1;

If
$$f(x) = \begin{cases} 3x - 1 & \text{if } x < 1 \\ 4 & \text{if } x = 1 \\ 2x & \text{if } x > 1 \end{cases}$$

If
$$f(x) = \begin{cases} 3x - 1 & \text{if } x < 1 \\ 4 & \text{if } x = 1 \\ 2x & \text{if } x > 1 \end{cases}$$
12. If $f(x) = \begin{cases} 3x & \text{if } x \le -2 \\ x^2 - 1 & \text{if } -2 < x < 2 \\ 3 & \text{if } x \ge 2 \end{cases}$

Discuss the continuity at x = 2 and x = -2

13. Find the values of m and n, so that the given function is continuous at x = 3;

$$f(x) = \begin{cases} mx & \text{if } x < 3\\ n & \text{if } x = 3\\ -2x + 9 & \text{if } x > 3 \end{cases}$$

$$\mathbf{14.} \text{ If } f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2} & , x \neq 2\\ k & .x = 2 \end{cases}$$

14. If
$$f(x) = \begin{cases} \frac{\sqrt{2x+5} - \sqrt{x+7}}{x-2} & , x \neq 2 \\ k & , x = 2 \end{cases}$$

Find value of k so that f(x) is continuous at x = 2

UNIT

2

DEFINITIONS + SUMMARY

INCREMENT

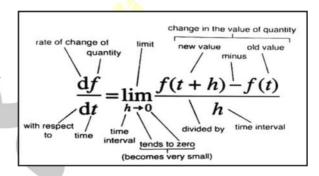
In mathematics increment means "the difference between two values of the variables". If y is a function of x. A small change in the value of x is called an increment in x and it is denoted by δx .

 $\delta x = (x \text{ of terminal point}) - (x \text{ of initial point})$

 $\delta y = (y \text{ of terminal point}) - (y \text{ of initial point})$

Note

If y = f(x) where $x \in D_f$ (Domain of f)


 \Rightarrow x is called independent variable and y is called dependent variable.

AVERAGE RATE OF CHANGE

Suppose a particle is moving in straight line and its positions after "t" and " t_1 " are given by s(t) and $s(t_1)$ then the quotient $\frac{s(t_1)-s(t)}{t_1-t}$ represents the average rate of change.

DERIVATIVE

If y be the function of x, then $\lim_{\delta x \to 0} \frac{f(x+\delta x)-f(x)}{\delta x}$ is called derivative of f(x) w.r.t x and is denoted by f(x) or Dy or $\frac{dy}{dx}$.

NOTATION FOR DERIVATIVE

In a table the notations for the derivative of y = f(x) used by different mathematicians:

Name of Mathematician	Leibnitz	Newton	Lagrange	Cauchy
Notation used for derivative	$\frac{dy}{dx}$ or $\frac{df}{dx}$	f'(x)	f'(x)	Df(x)

FINDING f'(x) FROM DEFINITION OF DERIVATIVE

Given a function y = f(x), f'(x) if it exists, can be found by the following four steps:

Step I Find $f(x + \delta x)$

Step II Simplify $f(x + \delta x) - f(x)$

Step III Dividing $f(x + \delta x) - f(x)$ by δx to get $\frac{f(x+\delta x)-f(x)}{\delta x}$ and simplify it

Step IV Find $\lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}$

The method of finding derivatives by this process is called **differentiation** by **definition** or by **ab-initio** or from **first principle**.

THEOREM ON DIFFERENTIATION

1. POWER RULE

 $\frac{d}{dx}(x^n) = nx^{n-1}$, where n is rational number.

2. DERIVATIVE OF CONSTANT

 $\frac{d}{dx}(c) = 0$, derivative of a constant is zero.

3. SUM OR DIFFERENCE THEOREM

If "f" and "g" are differentiable at x, then

$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x) = f'(x) \pm g'(x)$$

4. PRODUCT THEOREM

If "f" and "g" are differentiable at x, then

$$\frac{d}{dx}[f(x).g(x)] = \frac{d}{dx}[f(x)]g(x) + f(x)\frac{d}{dx}[g(x)] = f'(x)g(x) + f(x)g'(x)$$

5. QUOTIENT THEOREM

If "f" and "g" are differentiable at x, then

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2} = \frac{g(x) f'(x) - f(x) g'(x)}{[g(x)]^2}$$

THE CHAIN RULE (DIFFERENTIATION OF COMPOSITE FUNCTION)

If y = f(u) and u = g(x) are two differentiable functions, then the derivative of the composition function y = f(g(x)) is given by

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

DIFFERENTIATION OF IMPLICIT FUNCTIONS

A function which contains two or more variables that are not independent of each other is called an implicit function.

Example:
$$y^3 + 3xy + x^3 = 5$$

The General Power Rule is given by

$$\frac{d}{dx}(y^n) = ny^{n-1}\frac{dy}{dx}$$

DIFFERENTIATION OF PARAMETRIC FUNCTIONS

Sometimes, the dependent variable "y" is not given in terms of the independent variable "x" rather both variable are given as a function of another variable say "t", is called *parameter*.

rather both variable are given as a function of another variable
fxample:
$$x = f(t), y = g(t)$$
 we find $\frac{dy}{dx}$ as fellows:
$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$
 (By Chain Rule)

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$
 (By Chain Rule)

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

$\frac{d}{dx}(sinx) = cosx$	$\frac{d}{dx}(cosecx) = -cosecx \ cotx$
$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(secx) = secx \ tanx$
$\frac{d}{dx}(tanx) = sec^2x$	$\frac{d}{dx}(cotx) = -cosec^2x$

DIFFERENTIATION OF INVERSE TRIGONOMETRIC FUNCTIONS

$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$
$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$
$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$	$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$

DIFFERENTIATION OF LOGARITHMIC FUNCTIONS

1.
$$\frac{d}{dx}(lnx) = \frac{1}{x}$$

1.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$
2.
$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

DIFFERENTIATION OF EXPONENTIAL FUNCTIONS

1.
$$\frac{d}{dx}(e^x) = e^x$$

1.
$$\frac{d}{dx}(e^x) = e^x$$
2.
$$\frac{d}{dx}(a^x) = a^x \ln a$$

DIFFERENTIATION OF HYPERBOLIC FUNCTIONS

$\frac{d}{dx}(sinhx) = coshx$	$\frac{d}{dx}(cosechx) = -cosechx \ cothx$
$\frac{d}{dx}(coshx) = sinhx$	$\frac{d}{dx}(sechx) = -sechx \ tanhx$
$\frac{d}{dx}(tanhx) = sech^2x$	$\frac{d}{dx}(cothx) = -cosech^2x$

DIFFERENTIATION OF INVERSE HYPERBOLIC FUNCTIONS

$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{1+x^2}}$	$\frac{d}{dx}(\operatorname{cosech}^{-1} x) = -\frac{1}{x\sqrt{1+x^2}}$
$\frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}}$	$\frac{d}{dx}(\operatorname{sech}^{-1}x) = -\frac{1}{x\sqrt{1-x^2}}$
$\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}$	$\frac{d}{dx}(\coth^{-1}x) = \frac{1}{1-x^2} = -\frac{1}{x^2 - 1}$

POWER SERIES

A series of the form $a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \cdots + a_nx^n + \cdots$ is called **Power Series** expansion of a function f(x), where $a_0, a_1, a_2, a_3, a_4 \dots a_n \dots$ are constants and x s variable.

MACLAURIN SERIES OR MACLAURIN'S THEOREM

If f(x) is expanded in ascending powers of x as an infinite series, then

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots + \frac{x^n}{n!}f^n(0) + \dots$$

TAYLOR SERIES OR TAYLOR'S THEOREM

If f is defined in the interval containing 'a' and its derivatives of all orders exist at x = a, then we can expand f(x) as

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \dots + \frac{f^n(a)}{n!}(x - a)^n + \dots$$
If $a = 0$ then shows expansion becomes Mealeurin Series

If a = 0 then above expansion becomes Maclaurin Series.

Taylor's Theorem can be stated as: If x and h are two independent quantities and f(x + y)**h**) can be expanded in ascending power of **h** as an infinite series, then

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \dots + \frac{f^n(x)}{n!}h^n + \dots$$

INCREASING FUNCTION

Let f(x) be defined on an interval (a, b) and $x_1, x_2 \in (a, b)$ such that

 $f(x_1) < f(x_2)$, for all $x_1 < x_2$ then f(x) is called **increasing** on the interval (a, b).

DECREASING FUNCTION

Let f(x) be defined on an interval (a, b) and $x_1, x_2 \in (a, b)$ such that

 $f(x_1) > f(x_2)$, for all $x_1 < x_2$ then f(x) is called **decreasing** on the interval (a, b).

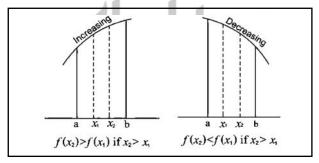


FIGURE 1: INCREASING & DECREASING FUNCTION

Note

Let f(x) be the differentiable function on the open interval (a, b) then

- (1) f(x) is increasing on (a, b) if f'(x) > 0 for each $x \in (a, b)$
- (2) f(x) is decreasing on (a, b) if f'(x) < 0 for each $x \in (a, b)$
- (3) f(x) is neither increasing nor decreasing on (a, b) if f'(x) = 0 for each $x \in (a, b)$

STATIONARY POINT

Any point where f is neither increasing nor decreasing is called **Stationary Point**. At stationary point f'(x) = 0.

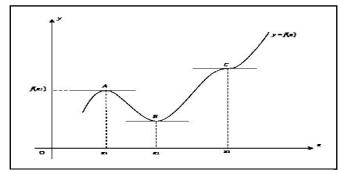
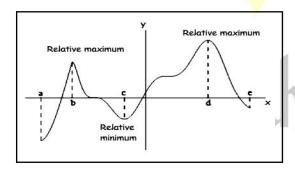


FIGURE 2: A,B,C ARE STATIONARY POINT

RELATIVE MAXIMA


A function "f" is said to have relative maxima/maximum at $x = c \in [a, b]$ if

- (i) There exists interval (a, c] in which f increases and
- (ii) There exists interval [c, b) in which f decreases

RELATIVE MINIMA

A function "f" is said to have relative minima/minimum at $x = c \in [a, b]$ if

- (i) There exists interval (a, c] in which " f" decreases and
- (ii) There exists interval [c, b] in which "f" increases

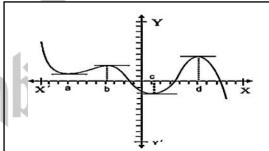


FIGURE 3: RELATIVE EXTREMA

Note

Both Relative Maxima & Relative Minima are called in general Relative Extrema.

CRITICAL VALUE & CRITICAL POINT

If $c \in D_f$ and f'(c) = 0 or f'(c) does not exist, then the number c is called *critical value* for f while the point (c, f(c)) on the graph of f is named as a *critical point*.

FIRST DERIVATIVE RULE:

Let f be differentiable in neighborhood of c where f'(c) = 0.

- 1. If f'(x) changes sign from positive to negative as x increases through c, then f(c) the relative maxima of f.
- 2. If f'(x) changes sign from negative to positive as x increases through c, then f(c) is the relative minima of f.

SECOND DERIVATIVE RULE:

Let f be differentiable function in a neighborhood of c where f'(c) = 0 Then

- 1. f has relative minima at c if f''(c) > 0.
- 2. f has relative maxima at c if f''(c) < 0.

2ND DERIVATIVE TEST FOR EXTREME VALUES OF A FUNCTION

Let f(x) be a given function.

Step I: Find f'(x) and f''(x)

Step II: Put f'(x) = 0 and solve for x, let x = a

Step III: $f''(x)/_{x=a} > 0$ (*Positive*), then f(x) is minimum at x = a

Step IV: $f''(x)/_{x=a} < 0$ (Negative), then f(x) is maximum at x = a

Note

- (1) A stationary point is called a **turning point** if it is either a maximum point or minimum point.
- (2) If f'(x) > 0 before the point x = a, f'(x) = 0 at x = a

and if f'(x) > 0 after x = a, then

f does not have a relative maxima.

See the graph of $f(x) = x^3$. In this case, we have

$$f'(x) = 3x^2$$
, that is,

$$f'(0-\varepsilon) = 3(-\varepsilon)^2 = 3\varepsilon^2 > 0$$

And
$$f'(0 + \varepsilon) = 3(\varepsilon)^2 = 3\varepsilon^2 > 0$$

The function f is increasing before x = 0

and also, it is increasing after x = 0.

Such a point of the function is called

the point of inflexion or inflection.

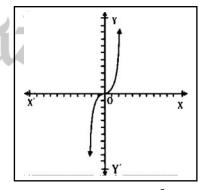


FIGURE 4: GRAPH OF x^3

MCQ's

Choose the correct answer.

1	$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} ex$	xist,	is called				
a	Derivative at x	b	Derivative at <i>a</i>	c	Derivative at <i>h</i>	d	Derivative at 0
2	$\lim_{x \to 0} \frac{f(x) - f(a)}{x - a} $ exist	t, is	called				
a	Derivative at x	b	Derivative at <i>a</i>	c	Derivative at <i>h</i>	d	Derivative at 0
3	$\lim_{\delta x \to 0} \frac{f(x+\delta x) - f(x)}{\delta x}$	=_	-				
a	$\frac{dy}{da}$	a	f'(a)	a	$\frac{fy}{dx}$	a	$\frac{dy}{dx}$
4	The process of fir	ndin	g the derivative of	a fu	nction f at "x"		
a	Integration of <i>x</i>	a	Derivative of $f(x)$ w.r.t x	a	Derivative of $f(x)$ w.r.t y	a	None of these
5	The notation $\frac{dy}{dx}$ for	or th	ne derivative of y	= f	f(x) used by	<u>/</u>	
a	Leibnitz	a	Newton	a	Lagrange	a	Cauchy
6	The notation $f'(x)$ for the derivative of $y = f(x)$ used by						
a	Leibnitz	a	Newton	a	Lagrange	a	Cauchy
7	The notation $f'(x)$ for the derivative of $y = f(x)$ used by						
a	Leibnitz	a	Newton	a	Lagrange	a	Cauchy
8	The notation Df (<i>x</i>) f	or the derivative of	f y	= f(x) used by		
a	Leibnitz	a	Newton	a	Lagrange	a	Cauchy
9	Leibniz used	n	otation for derivati	ive.	N/17		
a	$\frac{dy}{dx}$	b	$f^{\cdot}(x)$	c	f'(x)	d	Df(x)
10	Newton used	r	notation for derivat	ive.			
a	$\frac{dy}{dx}$	b	$f^{\cdot}(x)$	c	f'(x)	d	Df(x)
11	Lagrange used		notation for deriva	ativ	e.		•
a	$\frac{dy}{dx}$	b	f'(x)	c	f'(x)	d	Df(x)
12	Cauchy used	n	otation for derivati	ive.	ı		
a	$\frac{dy}{dx}$	b	f'(x)	c	f'(x)	d	Df(x)

13	$\lim_{x \to 0} \frac{\delta y}{\delta x}$ is equal to						
a	$\frac{dy}{da}$	b f'	'(a)	c	$\frac{fy}{dx}$	d	$\frac{dy}{dx}$
14	Derivative of a co	onstant i	function is				
a	1	b -	1	c	0	d	x
15	Derivative of $\frac{1}{x}$ is	equal to	0				
a	$-x^2$	b x	-2	c	$-x^{-2}$	d	x
16	If $n = 0$ then $\frac{d}{dx}$ ((x^n) is ϵ	equal to				
a	0	b 1		c	-1	d	2
17	$\frac{d}{dx}(x^n) = nx^{n-1}$	is knov	vn as rul	e.			
a	Quotient	b Pr	oduct	c	Sum	d	Power
18	Derivative of \sqrt{x}	at $x = 0$	a is equal to				
a	$2\sqrt{x}$	$\frac{b}{2v}$	\sqrt{a}	С	$\frac{1}{\sqrt{a}}$	d	$\frac{2}{\sqrt{a}}$
19	If $y = \frac{1}{x^2}$ then $\frac{dy}{dx}$	at $x = $	−1 is equal to		7)		
a	0	b 2		c	-1	d	None of these
20	$\frac{d}{dx}\left(\frac{1}{ax+b}\right) = -$						
a	$\frac{1}{(ax+b)^2}$	b	$\frac{1}{(ax+b)^2}$	c	$-\frac{a}{(ax+b)^2}$	d	$\frac{a}{(ax+b)^2}$
21	$\frac{d}{dx}\left(\frac{1}{(ax+b)^n}\right) =$	=			1		
a	$\frac{a}{(ax+b)^{n+1}}$	$\frac{b}{a}$	$\frac{na}{(x+b)^{-n+1}}$	С	$\frac{-na}{(ax+b)^{n+1}}$	d	$\frac{na}{(ax+b)^n}$
22	$\frac{d}{dx}(ax+b)^n = 1$			- 4			
a	$n(ax^{n-1}+b)$	b n((ax + b)	c	nax^{n-1}	d	$na(ax+b)^{n-1}$
23	If $y = x - \frac{1}{x}$ then	$\frac{dy}{dx} = ?$					
a	$1 + \frac{1}{x^2}$	b 1 -	$-\frac{1}{x^2}$	С	$1+\frac{1}{x}$	d	$1-\frac{1}{x}$
24	$\frac{d}{dx}\left(3x^{\frac{4}{3}}\right) = \underline{\hspace{1cm}}$	_					
a	$4x^{\frac{1}{3}}$	$\frac{b}{4}$	$\chi^{\frac{1}{3}}$	c	$\frac{4}{7}x^{\frac{1}{3}}$	d	$x^{\frac{1}{3}}$

$$\frac{d}{dx}\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 = ?$$

a
$$1+\frac{1}{x^2}$$

$$1 + \frac{1}{x^2}$$
 b
$$1 - \frac{1}{x^2}$$

$$c 1 - \frac{1}{2x}$$

$$\frac{d}{dx}\left(\frac{1}{\sqrt{x}}\right) = \underline{\qquad}$$

a
$$\frac{1}{2x\sqrt{x}}$$

$$\frac{1}{2x\sqrt{x}}$$

$$\frac{c}{2x}\left(x\sqrt{x}\right)$$

$$\frac{d}{dx}\left(\frac{x}{a}\right) =$$

a
$$\frac{x}{a^2}$$

$$\frac{1}{a}$$

$$\frac{c}{a^2}$$

$$\frac{d}{a^2}$$

$$\frac{d}{dx}\left(\frac{a}{x}\right) = ?$$

a
$$\frac{1}{x}$$

$$\frac{b}{x}$$

$$c \frac{a}{x^2}$$

$$\frac{\mathrm{d}}{\mathrm{d} x^2}$$

a
$$\frac{1}{x}$$
 b $\frac{d}{dx}(x^2+1)^2 = \underline{\qquad}$

a
$$2(x^2 + 1)$$

b
$$(x^2 + 1)^2$$

c
$$2x(x^2+1)$$

d
$$4x(x^2+1)$$

$$\frac{d}{dx}(x-5)(3-x) = 3$$

a
$$2x + 8$$

b
$$-2x + 8$$

$$c \mid 2x - 8$$

d
$$x + 8$$

a
$$2(x^{2} + 1)$$
 b $(x^{2} + 1)^{2}$
30 $\frac{d}{dx}(x - 5)(3 - x) = ?$
a $2x + 8$ b $-2x + 8$
31 The derivative of $\frac{x^{2} - 4}{x + 2}$ is equal to:

a
$$2x$$

a
$$2x$$
 | b | -2
32 The derivative of $\frac{x^3+2x^2}{x^3}$ is equal to:

a
$$\frac{2}{x^2}$$

$$\frac{b}{x^2}$$

$$c \frac{1}{2x^2}$$

$$\frac{d}{2x^2}$$

$$\frac{d}{dx}\left(\frac{1}{g(x)}\right) = \underline{\hspace{1cm}}$$

a
$$(-1)[g(x)]^{-2}g'(x)$$
 b $(-1)[g(x)]g'(x)$

$$(-1)[g(x)]g'(x)$$

c
$$[g(x)]^{-2}g'(x)$$

Derivative of
$$(x^3 + 1)^9$$
 is equal to

a
$$x^2(x^3+1)^8$$

$$x^2(x^3+1)^8$$
 b $27x^2(x^3+1)^8$

$$c x^2(x^3+1)^{-8}$$

$$| d | -x^2(x^3+1)^8$$

$$\frac{d}{dx}\left(x^2 + \frac{1}{x^2}\right) = \underline{\hspace{1cm}}$$

a
$$2\left(x-\frac{1}{x^3}\right)$$

$$2\left(x-\frac{1}{x^3}\right) \qquad b \qquad 2\left(x-\frac{1}{x^2}\right)$$

$$c \left[2\left(x + \frac{1}{x^2}\right) \right]$$

$$\frac{\mathrm{d}}{2\left(x+\frac{1}{x^3}\right)}$$

$$\frac{d}{dx}(\sin x) = \underline{\hspace{1cm}}$$

c
$$sec^2x$$

$$d - cosec^2x$$

37	$\frac{d}{dx}(cosx) = \underline{\hspace{1cm}}$						
a		b	-sinx	c	sec^2x	d	-cosec ² x
38	$\frac{d}{dx}(tanx) = \underline{\hspace{1cm}}$						
a	cosx	b	-sinx	c	sec^2x	d	$-cosec^2x$
39	$\frac{d}{dx}(cotx) = \underline{\hspace{1cm}}$						
a	cosx	b	-sinx	c	sec^2x	d	$-cosec^2x$
40	$\frac{d}{dx}(secx) = \underline{\hspace{1cm}}$		<u> </u>				
a	secx tanx	b	-sinx	c	sec^2x	d	-cosecx cotx
41	$\frac{d}{dx}(cosecx) = _$						
a	secx tanx		-sinx	c	sec ² x	d	-cosecx cotx
42	$\frac{d}{dx}(sinhx) = \underline{\hspace{1cm}}$	À			À	5	
a	coshx	b	sinhx	c	sech ² x	d	-cosech ² x
43	$\frac{d}{dx}(coshx) = _$				1 4	7	
a	coshx	b	sinhx	c	sech ² x	d	-cosech ² x
44	$\frac{d}{dx}(tanhx) = \underline{\hspace{1cm}}$		•		8		
a	coshx	b	sinhx	c	sech ² x	d	-cosech ² x
45	$\frac{d}{dx}(cothx) = _$		1		<u>د ر :</u>		
a	coshx	b	sinhx	c	sech ² x	d	-cosech ² x
46	$\frac{d}{dx}(cosechx) =$		l	1			
a	coshx	b	-sechx tanhx	c	-cosechx cothx	d	$-cosech^2x$
47	$\frac{d}{dx}(sechx) = _$						
a	coshx	b	-sechx tanhx	c	-cosechx cothx	d	$-cosech^2x$
48	$\frac{d}{dx}(\sin^{-1}x) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$						
a	$\frac{1}{\sqrt{1-x^2}}$	b	$-\frac{1}{\sqrt{1-x^2}}$	С	$\frac{1}{1+x^2}$	d	$\frac{1}{x\sqrt{x^2-1}}$

$$\frac{d}{dx}(\cos^{-1}x) = \underline{\hspace{1cm}}$$

a
$$\frac{1}{\sqrt{1-x^2}}$$

$$\frac{1}{\sqrt{1-x^2}} \qquad \qquad b \qquad -\frac{1}{\sqrt{1-x^2}}$$

$$\begin{array}{c|c}
c & 1 \\
\hline
1 + x^2
\end{array}$$

$$\frac{d}{dx}(\tan^{-1}x) = \underline{\hspace{1cm}}$$

a
$$\frac{1}{\sqrt{1-x^2}}$$

$$\frac{1}{\sqrt{1-x^2}} \qquad \qquad b \qquad -\frac{1}{\sqrt{1-x^2}}$$

$$\begin{array}{c|c} c & \frac{1}{1+x^2} \end{array}$$

$$\frac{1}{x\sqrt{x^2-1}}$$

$$\frac{d}{dx}(\cot^{-1}x) = \underline{\qquad}$$

a
$$\frac{1}{\sqrt{1-x^2}}$$

$$c \frac{1}{1+x^2}$$

d
$$\frac{1}{x\sqrt{x^2-1}}$$

$$\begin{array}{c|c}
52 & \frac{d}{dx}(\sec^{-1}x) = \underline{} \\
a & -\frac{1}{x\sqrt{1-x^2}} & b
\end{array}$$

$$\begin{vmatrix} a & -\frac{1}{x\sqrt{1-x^2}} \end{vmatrix}$$

$$\begin{array}{c|c} b & -\frac{1}{\sqrt{1-x^2}} \end{array}$$

$$\begin{array}{c|c} c & \frac{1}{1+x^2} \end{array}$$

$$\begin{vmatrix} a & -\frac{1}{x\sqrt{x^2-1}} \end{vmatrix}$$

$$\begin{array}{c|c} b & -\frac{1}{\sqrt{1-x^2}} \end{array}$$

$$\begin{array}{c|c} c & 1 \\ \hline 1+x^2 \end{array}$$

$$\begin{array}{c|cccc}
\hline
54 & \frac{d}{dx}(\sinh^{-1}x) = \underline{} \\
\hline
a & \frac{1}{\sqrt{x^2 - 1}} & b & \frac{1}{1 - x^2}
\end{array}$$

a
$$\frac{1}{\sqrt{x^2-1}}$$

$$\begin{array}{c|c} b & 1 \\ \hline 1 - x^2 \end{array}$$

c
$$\frac{1}{\sqrt{1+x^2}}$$

$$\frac{\mathrm{d}}{x\sqrt{1+x^2}}$$

$$\frac{d}{dx}(\cosh^{-1}x) = \underline{\hspace{1cm}}$$

a
$$\frac{1}{\sqrt{x^2-1}}$$

$$\begin{array}{c|c} b & 1 \\ \hline 1-x^2 \end{array}$$

$$\begin{array}{c|c} c & \frac{1}{\sqrt{1+x^2}} \end{array}$$

$$\frac{\mathrm{d}}{x\sqrt{1+x^2}}$$

$$\frac{d}{dx}(\tanh^{-1}x) = \underline{\hspace{1cm}}$$

a
$$\frac{1}{\sqrt{x^2-1}}$$

$$\frac{1}{\sqrt{x^2 - 1}} \qquad \qquad b \qquad \frac{1}{1 - x^2}$$

$$\begin{array}{c|c} c & 1 \\ \hline \sqrt{1+x^2} \end{array}$$

$$\begin{vmatrix} d \\ -\frac{1}{x\sqrt{1+x^2}} \end{vmatrix}$$

$$\frac{d}{dx}(\coth^{-1}x) = \underline{\hspace{1cm}}$$

a
$$\frac{1}{\sqrt{x^2-1}}$$

$$\begin{array}{|c|c|} c & \frac{1}{\sqrt{1+x^2}} \end{array}$$

$$\frac{\mathrm{d}}{x\sqrt{1+x^2}}$$

$$\frac{d}{dx}(\operatorname{sech}^{-1}x) = \underline{\hspace{1cm}}$$

a
$$\frac{1}{\sqrt{x^2 - 1}}$$
 b $\frac{1}{1 - x^2}$

$$\begin{vmatrix} c \\ -\frac{1}{x\sqrt{1-x^2}} \end{vmatrix}$$

$$\begin{vmatrix} d \end{vmatrix} - \frac{1}{x\sqrt{1+x^2}}$$

$$\frac{d}{dx}(\operatorname{cosech}^{-1}x) = \underline{\qquad}$$

a
$$\frac{1}{\sqrt{x^2-1}}$$

$$\begin{array}{c|c} b & 1 \\ \hline 1 - x^2 \end{array}$$

$$c \frac{1}{\sqrt{1+x^2}}$$

$$\begin{array}{c|c} d & -\frac{1}{x\sqrt{1+x^2}} \end{array}$$

$$\frac{d}{dx}(a^x) = \underline{}$$

a
$$a^x$$

$$b \mid a^x lnx$$

$$d a^x lna$$

$$\frac{d}{dt}\left(e^{f(x)}\right) = \underline{\qquad}$$

a
$$e^{f(x)}$$

b
$$e f'(x)$$

c
$$e^{f(x)}f'(x)$$

d
$$e^{f(x)}f(x)$$

$$\frac{d}{dx}(\log_a x) = \underline{\qquad}$$

a
$$\frac{1}{x}$$

b
$$\frac{x}{lna}$$

$$c \frac{1}{xlna}$$

$$\frac{1}{x}lna$$

$$\frac{d}{dx}(\cos 7x) = \underline{\hspace{1cm}}$$

$$7\cos 7x$$
 b $-7\cos 7x$

c
$$7\sin 7x$$

$$d = -7\sin 7x$$

$$\frac{d}{dx}(\ln e^x) = \underline{\hspace{1cm}}$$

$$\frac{1}{e^x}$$

$$c \frac{1}{x}$$

$$\frac{d}{dx}(\sinh x) = \underline{\qquad}$$

$$\frac{e^x - e^{-x}}{2}$$

b
$$\frac{e^x + e^{-x}}{2}$$

$$c \quad \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\begin{array}{c|c} d & \frac{2}{e^x + e^{-x}} \end{array}$$

$$\frac{d}{dx}(\cos x^2) = \underline{\qquad}$$
a $-2\sin x^2$ b $2x\sin x^2$

a
$$-2 \sin x^2$$

b
$$2x \sin x^2$$

$$c -x \sin x^2$$

$$d -2x \sin x^2$$

$$\frac{d}{dx}(\ln{(\ln x)}) = \underline{\hspace{1cm}}$$

a
$$\frac{1}{lnx}$$

$$\begin{array}{c|c} b & \frac{1}{x lnx} \end{array}$$

$$c \left| \frac{1}{(lnx)^2} \right|$$

$$\frac{d}{dx}(\ln(\sin x)) = \underline{\hspace{1cm}}$$

a
$$\frac{1}{\sin x}$$

69 Derivative of
$$ln(ax^2 + b)$$
 is

a	$\frac{a}{ax^2+b}$	b	$\frac{2ax}{ax^2 + b}$	c	$\frac{2a}{ax^2 + b}$	d	None of these
70	$\frac{d}{dx}(\sqrt{tanx}) = _$		_				
a	$\frac{1}{2}\sqrt{\tan x} \sec^2 x$	b	$\sqrt{\tan x} \sec^2 x$	c	$\frac{1}{2\sqrt{tanx}}$ $\sec^2 x$	d	None of these
71	$\frac{d}{dx}(\cot^2 x) = \underline{\hspace{1cm}}$						
a	cotx cosecx	b	$-2cotx cosec^2x$	c	sec^2x	d	-cosecx cotx
72	$\frac{d}{dx}(f(x)\sin x) =$						
a			f'(x)sinx -			d	f'(x)cosx
	$f(x) \cos x$		$f(x) \cos x$		f(x) sinx		
73	Derivative of sin	(taı	nx) is				,
a	cos(tanx)	b	$sec^2xcos(tanx)$	c	-sec ² xcos(tanx)	d	None of these
74	$\frac{d}{dx}(\sin^2 x + \cos^2 x)$	² x)	=		2		
a	1	b	0	c	-1	d	2
75	$(1+x^2)\frac{d}{dx}(\tan^-$	¹ x	$-\cot^{-1}x) = \underline{\hspace{1cm}}$				
a	2	b	$\frac{2}{1+x^2}$	c	0	d	$\frac{-2}{1+x^2}$
76	$\frac{1}{2}\frac{d}{dx}(\tan^{-1}x - \cos^{-1}x)$	ot ⁻	$^{1}x) = $				
a	$\frac{-1}{1+x^2}$	b	$\frac{1}{1+x^2}$	c	$\frac{1}{1-x^2}$	d	$\left \frac{-1}{1-\alpha^2} \right $
77	$\frac{d}{dx}(\sec^{-1}x + \cos^{-1}x)$	sec [°]			1-1		1 - 1
-				h	0.17	.1	1 2
a 78	1 d	b		c	0	d	2
/6	$\sqrt{1-x^2}\frac{d}{dx}(\cos^-$	¹ X	$+\sin^{-1}x) = $				
a	1 7 7 7	b	2	c	0	d	1
79	$\frac{\sqrt{1-x^2}}{d}$		$\sqrt{1-x^2}$				
,,	$\frac{d}{dx}(\sin 2x + \cos$	2 <i>x</i>)	=				
a	$\cos 2x + \sin 2x$	b	$\cos 2x - \sin 2x$	c	$2\cos 2x + 2\sin 2x$	d	$2(\cos 2x - \sin 2x)$
80	$\frac{d}{dx}(\sinh 2x) = \underline{}$		_				
a	2 cosh 2 <i>x</i>	b	$2 \sinh 2x$	c	$-2\cosh 2x$	d	$-\sinh 2x$

81	$\frac{d}{dx}(\ln\sinh x) =$						
	$\frac{dx}{dx}$ (in sinh x) =						
a	coth x		tanh x	c	– coth <i>x</i>	d	– tanh x
82	$\frac{d}{dx}(\cos^{-1}3x) =$						
a	$\frac{3}{\sqrt{1 - 9x^2}}$ $\frac{d}{dx} \left(\cot^{-1} \frac{x}{a} \right) = 1$	b	$\frac{-3}{\sqrt{1-9x^2}}$	c	$\frac{1}{\sqrt{1-9x^2}}$	d	$\frac{-1}{\sqrt{1-9x^2}}$
83	$\frac{d}{dx}\left(\cot^{-1}\frac{x}{a}\right) = -$						
a	$\frac{-a}{a^2 + x^2}$ $\frac{d}{dx}(\ln(\sin^2 x))$	b	$\frac{a^2}{a^2 + x^2}$	c	$\frac{-a^2}{a^2 + x^2}$	d	$\frac{-1}{a^2 + x^2}$
84	$\frac{d}{dx}(\ln{(\sin^2 x)})$						
a	$2 \cot x$	b	$-2 \cot x$	c	2 tan <i>x</i>	d	−2 tan <i>x</i>
85	$\frac{d}{dx}(a^{\sqrt{x}}) = \underline{\hspace{1cm}}$				4)	
a	$\frac{a^{\sqrt{x}}lna}{2\sqrt{x}}$	b	$a^{\sqrt{x}}$	С	$\frac{1}{2}a^{\sqrt{x}}$	d	$a^{\sqrt{x}}\sqrt{x}$
86	$\frac{d}{dx}(e^{x^2+1}) = \underline{\hspace{1cm}}$					(
a	e^{x^2+1}	b	$2xe^{x^2+1}$	c	xe^{x^2+1}	d	None of these
87	$\frac{d}{dx}(xe^x) = \underline{\hspace{1cm}}$	_	•		8		
a	$xe^x + 1$	b	xe ^x	c	$xe^x - 1$	d	$xe^x + e^x$
88	$\frac{d}{dx}(e^{\tan 2x}) = \underline{}$		- 71		1		
a	$2sec^22xe^{tan2x}$	b	e ^{tan 2x}	c	$sec^2 2xe^{tan \ 2x}$	d	None of these
89	$\frac{d}{dx}3^x = ?$		Ölla		puc		
a	3 ^x	b	$3^x ln3$	c	$3(3^x)$	d	3
90	$\frac{d}{dx}(e^{5x-2}) = \underline{\hspace{1cm}}$						
a	$5e^{5x-2}$		$2e^{5x-2}$	c	e^{5x-3}	d	$5e^{5x-3}$
91	If $f(x) = 2^{2x}$ the	en f	'(x) = ?				
a	2^{2x-1}	b	2 ^{2x} ln 2	c	$2^{2x+1} \ln 2$	d	$\frac{2^{2x}}{\ln 2}$
92	The differential c	o-ef	ficient of $e^{\sin x}$ equ	uals			

a	$e^{\sin x}\cos x$	b	$e^{\sin x} \sin x$	c	$\sin x e^{\sin x - 1}$	d	$\sin x e^{\sin x+1}$
93	$\frac{d}{dx}(2e^{3x}) = \underline{\hspace{1cm}}$						
a			$2e^{3x}$	c	$-6e^{3x}$	d	e^{3x}
94	$\frac{d}{dx}(e^x - e^{-x}) =$		_				
a	sinh x	b	cosh x	c	2 sinh x	d	2 cosh <i>x</i>
95	If $y = 5e^{3x-4}$ the	u.	·				
a	$15e^{3x-4}$	b	e^{3x-4}	c	$5e^{3x}$	d	$-15e^{3x-4}$
96	$\frac{dy}{dx} = \underline{\hspace{1cm}}$						
a	$\frac{dy}{dx} \times \frac{du}{dx}$		$\frac{dy}{dy} \times \frac{du}{dx}$	С	$\frac{dy}{du} \times \frac{du}{dx}$	d	None of these
97	If $x = at^2$ and y	= 2	at, then $\frac{dy}{dx} = $				
a	$\frac{2}{y}$		$\frac{2a}{y}$	c	2ay	d	2 <i>a</i>
98	If 3x + 4y - 5 =	M.			. 4 4		
a	$\frac{4}{3}$	b	$\frac{-4}{3}$	c	$\frac{3}{2}$	d	$\frac{-3}{\cdot}$
00	v				4		4
99	$\text{If } x^2 + y^2 = a^2,$	the	$n \frac{dy}{dx} = \underline{\hspace{1cm}}$				
a	$\frac{x}{y}$	b	$\frac{-x}{y}$	c	$\frac{y}{x}$	d	$\frac{-y}{x}$
100	Derivative of cos	χw	$x.r.t. \cos x is:$				
a			$\sin x$	С	0	d	
101	The higher deriva	tive	of the polynomial	f(x	$x) = \frac{1}{12}x^4 - \frac{1}{6}x^3 + \frac{1}{6}x^3$	$\frac{1}{4}x^2$	
a	3	b	4 •••	c	5	d	7
102	-		$- 2 \text{ then } y_2 = $				
a	$12x^3 - 8x + 1$	b	$36x^2 - 8$	c	72 <i>x</i>	d	0
103	If $y = e^{ax}$ then y	4 is	equal to:				
a	a^4e^{ax}	b	$3e^{ax}$	c	4 <i>e</i> ^{<i>ax</i>}	d	xe ^{ax}
104	If $y = e^{2x}$ then y	4 is	equal to:				
a	$16e^{2x}$	b	$8e^{2x}$	c	$4e^{2x}$	d	$-16e^{2x}$
105	If $y = \sin(ax + b)$						
a	$a\cos(ax+b)$	b	$-a^3\cos(ax+b)$	c	$a^4 \sin(ax+b)$	d	$-a^2\sin(ax+b)$

106	If $y = \sin 3x$ then $y_2 = \underline{\hspace{1cm}}$										
a	$3\cos x$	b	$3\cos 3x$	c	9 sin 3 <i>x</i>	d	$-9 \sin 3x$				
107	If $y = -a \sin x$ th	nen	y ₂ =								
a	a sin x	b	$a^2 cos x$	c	$-a \sin x$	d	None of these				
108	If $y = a(1 + \cos\theta)$, then $\frac{d^2y}{d\theta^2} = $										
a	$-a\sin\theta$	b	$a\cos\theta$	c	$a \sin \theta$	d	$-a\cos\theta$				
109	$\frac{d^2}{dx^2}(\cosh 3x) =$										
a		b	$3 \sinh 3x$	c	$-9 \cosh 3x$	d	9 cosh 3 <i>x</i>				
110	$\frac{d^2}{dx^2}(2^x) = \underline{\hspace{1cm}}$										
a	$x2^{x-1}$		$\ln 2^x$	c	$2^x(\ln 2)^2$	d	<i>x</i> ln 2				
111	If $f(x) = \cos x$ then				4	_					
a	1	b	0	c	-1	d	2				
112	$If f(x) = \sin x th$	nen _.	$f''\left(\frac{\pi}{2}\right) = ?$				4				
a	1	b	0	c	-1	d	2				
113	If $f(x) = \sin x$ then $f'(\cos^{-1} x) = ?$										
a	cos x	b	$\sin x$	c	-x	d	x				
114	$If f(x) = x^{2/3} th$	en <i>f</i>	G'(8) =?		67						
a	$\frac{1}{2}$	b	2 3	c	$\frac{1}{3}$	d	3				
115	If $f(x) = \sin x$, the	hen	$f'''(\pi)$		1						
a	-1	b	0 6 6	c	1/12	d	5				
116	$If f(x) = 3x^2 -$	2 <i>x</i> -	+1, then $f'(0) = 1$		nuc		1				
a	5	b	-2	c	1	d	2				
117	$If f(x) = \tan^{-1} x$	t, th	en $f'(\cot x)$ is equ	al to):						
a	$\frac{1}{1+x^2}$	b	sin^2x	c	$\cos^2 x$	d	sec^2x				
118	If $f(x) = x^{10}$, the	en <i>f</i>	'''(1) =								
a	1	b	10	c	90	d	100				
119	If both $u(x)$ and	v(x)) are function of x	ther	$\frac{uv'-vu'}{u^2}$ shows		1				
a	$\frac{d}{dx}\left(\frac{u}{v}\right)$	b	$\frac{d}{dx}\left(\frac{v}{u}\right)$	c	$\frac{d}{dx}(u.v)$	d	$\frac{d}{dx}(u+v)$				

120	A series of the for	m ($a_0 + a_1 x + a_2 x^2 +$	$-a_3$	$x^3 + a_4 x^4 + \dots + a$	nx^n	+ ··· is called					
a	Maclaurin Series	b	Maclaurin's Theorem	c	Taylor Series	d	Power Series					
121	The expansion f is called	(x)	= f(0) + xf'(0)	$+\frac{x^2}{2!}$	$f''(0) + \frac{x^3}{3!}f'''(0)$	+•	$\cdots + \frac{x^n}{n!} f^n(0) + \cdots$					
a	Maclaurin Series	b	Maclaurin's Theorem	c	Taylor's Theorem	d	Both a & b					
122												
a	Maclaurin Series	b	Theorem	c	Taylor's Theorem	d	Both a & b					
123	$\frac{1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^3}{3!}}{\sin x}$		is expansion of									
a	sinx	b	cosx	С	e	d	e^x					
124	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$	is	expansion of									
a	sinx	b	cosx	c	e	d	e^x					
125	The series $x - \frac{x^3}{3!}$	$+\frac{x}{5}$	$\frac{5}{1!} - \frac{x^7}{7!} + \cdots$ is of									
a	sin x	b	cos x	c	tan x	d	$-\sin x$					
126	$If f(x+h) = a^x$	+ <i>h</i> t	$hen f'(x) = \underline{\hspace{1cm}}$		A 4	И						
a	$a^{x+h}\ln(x+h)$	b	$a^x \ln a$	c	$a^x \ln x$	d	$a^{x+h} \ln a$					
127	$If f(x+h) = \cos x$	s(x	+ h) then $f'(x) =$	_	7	-	7					
a	cos x	b	$-\cos x$	c	$-\sin x$	d	sin x					
128	Geometrically de	riva	tive represent									
a	_		Slope of tangent line		Slope of secant line	d	None of these					
129	If $f(x) = x $ then	1 <i>f</i> ′	(x) at $x = 0$ is equ	al to	<u> </u>							
a	0	b	1511	c	Does not exist	d	-1					
130	If f be defined or all $x_1 < x_2$ then f			<i>x</i> ₁ ,	$x_2 \in (a, b)$ such that	t <i>f</i> ($f(x_1) < f(x_2), \text{ for }$					
a	Increasing	b	Decreasing	c	Constant	d	None of these					
131	If f be defined on all $x_1 < x_2$ then f			<i>x</i> ₁ ,	$x_2 \in (a, b)$ such tha	t f ($f(x_1) > f(x_2)$, for					
a	Increasing	b	Decreasing	c	Constant	d	None of these					
132	If f is increasing	in a	n interval $(a, b), f$	'(c)	is for every	<i>c</i> ∈	(a, b)					
a	Positive	b	Negative	c	Zero	d	None of these					
133	If f is decreasing	in a	in interval $(a, b), f$	'(c)	is for every	<i>c</i> ∈	(a, b)					

a	Positive	b	Negative	c	Zero	d	None of these				
134	If f be differential	ble	on (a, b) , f is incr	easi	$ng at x \in (a, b) if$						
a	f'(x) > 0	b	f'(x) < 0	c	f'(x)=0	d	None of these				
135	If f be differential	ble	on (a, b) , f is deci	reas	ing at $x \in (a, b)$ if						
a	f'(x) > 0	b	f'(x) < 0	c	f'(x) = 0	d	None of these				
136	If f be differentiable on (a, b) , f is neither increasing nor decreasing at $x \in (a, b)$ if										
a	f'(x) > 0	b	f'(x) < 0	c	f'(x) = 0	d	None of these				
137	Any point where	f is	neither increasing	nor	decreasing is called	i	point.				
a	Decreasing	b	Increasing	c	Stationary	d	Maximum				
138	At stationary poir										
a			f'(x) < 0			d	None of these				
139	Maximum and mi	inin	num values of the f	unc	tion is called						
a	extremum	b	Extreme value	c	Stationary	d	Both a & b				
140	Let f be differentiable function in a neighborhood of c where $f'(c) = 0$ Then f has relative minima at c if										
a	f'(x) > 0	b	f'(x) < 0	С	f''(c) > 0	d	f''(c) < 0				
141	relative maxima a	t c	if		orhood of <i>c</i> where <i>f</i>						
a	f'(x) > 0	b	f'(x) < 0	c	f''(c) > 0	d	f''(c) < 0				
142	for $x_1, x_2 \in (a, b)$) <i>f</i>	is increasing on the	e in	terval (a, b) for all	<i>x</i> ₁ <	$\langle x_2 \text{ if } \rangle$				
a	$f(x_1) > f(x_2)$	b	$f(x_1) < f(x_2)$	С	$f(x_1) \le f(x_2)$	d	None of these				
143	If $c \in D_f$ and $f'(c)$	c) =	= 0 or f'(c) does not	ot e	xist, then the numbe	er C	is called				
a	Increasing value	b	Decreasing value	С	Stationary value	d	Critical value				
144	Which one is deci	reas	ing function?_								
a	2-4x	b	4x-2	c	4 <i>x</i>	d	4x + 5				
145	$f(x) = x^2$ is incr	easi	ing if								
a					$f'(x) \le 0$	d	$f'(x) \ge 0$				
146	The point at whic	h <i>f</i>	$(x) = x^2 + 2x - 3$	is 1	neither increasing no	or d	ecreasing is				
a	(-1, -4)	b	(1,4)	c	(1, -4)	d	(-1,4)				
147	The function $f(x)$) =	$3x^2$ has relative m	inir	num at the point						
a	(0,0)	b	(0,1)	c	(1,1)	d	(-1,0)				

148	Minimum value of the function $f(x) = x^2 + 2x - 3$ is at $x = $								
a	-3	b	-2	c	0	d	-1		
149	The maximum value of the $f(x) = \sin x + \cos x$ in the interval $[0,2\pi]$ is								
a	2	b	$\frac{1}{\sqrt{2}}$	c	$\sqrt{3}$	d	$\sqrt{2}$		
150	Two positive integer whose sum is 30 and their product will be maximum are:								
a	14,16	b	15,15	c	10,20	d	12,18		

MCQ's Answers Key

1	2	3	4	5	6	7	8	9	10
a	b	d	b	a	c	b	d	a	b
11	12	13	14	15	16	17	18	19	20
c	d	d	c	c	a	d	b	b	c
21	22	23	24	25	26	27	28	29	30
c	d	a	a	b	b	b	d	d	b
31	32	33	34	35	36	37	38	39	40
c	b	a	b	a	a	ь	c	d	a
41	42	43	44	45	46	47	48	49	50
d	a	b	c	d	c	ь	a	b	c
51	52	53	54	55	56	57	58	59	60
b	d	a	c	a	b	b	c	d	d
61	62	63	64	65	66	67	<mark>68</mark>	69	70
c	c	d	a	b	d	b	c	b	c
71	72	73	74	75	76	77	78	79	80
b	a	b	b	a	ь	c	c	d	a
81	82	83	84	85	-86	87	88	89	90
a	b	a	a	a	b	d	a	b	a
91	92	93	94	95	96	97	98	99	100
c	a	a	d	a	С	b	d	b	d
101	102	103	104	105	106	107	108	109	110
b	b	a	a	d	d	a	d	d	c
111	112	113	114	115	116	117	118	119	120
b	c	d	c	c	b	b	c	b	d
121	122	123	124	125	126	127	128	129	130
d	c	d	b	a	b	c	b	С	a
131	132	133	134	135	136	137	138	139	140
b	a	b	a	b	С	С	С	d	c
141	142	143	144	145	146	147	148	149	150
d	b	d	a	a	a	a	d	d	b

IMPORTANT SHORT QUESTIONS

- 1. Define Derivative of a function.
- 2. Define Differentiation.
- 3. Find the derivative of f(x) = c by definition.
- **4.** Find the derivative of $f(x) = \sqrt{x}$ at x = a by definition.
- 5. Find the derivative of $x^{2/3}$ by definition.
- **6.** Find the derivative of $2 \sqrt{x}$ w. r. t. 'x' by definition.
- 7. Find the derivative of $\frac{1}{\sqrt{x}}$ w. r. t. 'x' by definition.
- **8.** Find the derivative of $\frac{1}{x^3}$ w. r. t. 'x' by definition.
- 9. Find the derivative of $\frac{1}{x-a}$ w.r.t. 'x' by definition.
- 10. Find the derivative of $(x + 4)^{1/3}$ w. r. t. 'x' by definition.
- 11. Find $\frac{dy}{dx}$, if $y = \sqrt{x+2}$ by first principle.
- 12. Calculate $\frac{d}{dx} \left(3x^{\frac{4}{3}} \right)$
- **13.** Find the derivative of $y = (x^2 + 5)(x^3 + 7)$ w.r.t. x.
- **14.** Find $\frac{dy}{dx}$, if $y = \frac{(\sqrt{x}+1)(x^{3/2}-1)}{x^{1/2}-1}$
- **15.** Differentiate $x^{-3} + 2x^{-\frac{3}{2}} + 3$ w.r.t. 'x'.
- 16. Differentiate $\frac{a+x}{a-x}$ w.r.t. 'x'. 17. Differentiate $\frac{2x-3}{2x+1}$ w.r.t. 'x'.
- 18. Differentiate (x-5)(3-x) w.r.t. 'x'.
- **19.** Differentiate $\left(\sqrt{x} \frac{1}{\sqrt{x}}\right)^2$ w.r.t. 'x'.
- **20.** Differentiate $\frac{(1+\sqrt{x})(x-x^{3/2})}{\sqrt{x}}$ w.r.t. 'x'.
- **21.** Differentiate $\frac{(x^2+1)^2}{x^2-1}$ w.r.t. 'x'.
- 22. Differentiate $\frac{x^2+1}{x^2-3}$ w.r.t. 'x'.
- 23. Differentiate $\frac{2x-1}{\sqrt{x^2+1}}$ w.r.t. 'x'.
- **24.** If $y = x^4 + 2x^2 + 2$, prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$
- **25.** Find the derivative of $(x^3 + 1)^9$ w.r.t. 'x'.
- **26.** Find $\frac{dy}{dx}$, if $x = at^2$ and y = 2at
- **27.** Find $\frac{dy}{dx}$, if $x = 1 t^2$ and $y = 3t^2 2t^3$ **28.** Find $\frac{dy}{dx}$, if $x^2 + y^2 = 4$ **29.** Find $\frac{dy}{dx}$, if $y^2 + x^2 4x = 5$ **30.** Find $\frac{dy}{dx}$, if $y^2 xy x^2 + 4 = 0$

- 31. Differentiate $x^2 + \frac{1}{r^2}$ w.r.t. $x \frac{1}{r}$

32. Find
$$\frac{dy}{dx}$$
, if $y = \sqrt{x + \sqrt{x}}$

33. Find
$$\frac{dy}{dx}$$
, if $y = (3x^2 - 2x + 7)^6$

34. Find
$$\frac{dy}{dx}$$
, if $y = \sqrt{\frac{a^2 + x^2}{a^2 - x^2}}$

35. Find
$$\frac{dy}{dx}$$
, if $3x + 4y + 7 = 0$

36. Find
$$\frac{dy}{dx}$$
, if $xy + y^2 = 2$

37. Find
$$\frac{dy}{dx}$$
, if $x^2 - 4xy - 5y = 0$

35. Find
$$\frac{dy}{dx}$$
, if $3x + 4y + 7 = 0$
36. Find $\frac{dy}{dx}$, if $xy + y^2 = 2$
37. Find $\frac{dy}{dx}$, if $x^2 - 4xy - 5y = 0$
38. Find $\frac{dy}{dx}$, if $4x^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$
39. Find $\frac{dy}{dx}$, if $x = \theta + \frac{1}{\theta}$ and $y = \theta + 1$

39. Find
$$\frac{dy}{dx}$$
, if $x = \theta + \frac{1}{\theta}$ and $y = \theta + 1$

40. Differentiate
$$x^2 - \frac{1}{x^2}$$
 w. r. t. x^4

41. Differentiate
$$(1 + x^2)^n$$
 w. r. t. x^2

42. Differentiate
$$\frac{x^2+1}{x^2-1}$$
 w.r.t. x^3

43. Differentiate
$$sin^3x$$
 w. r. t. cos^2x

44. Prove that
$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$$

45. Prove that
$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

46. Prove that
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

47. Prove that
$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2-1}}$$

48. Prove that $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$

48. Prove that
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$$

49. Prove that
$$\frac{d}{dx}(\cot^{-1}x) = -\frac{1}{1+x^2}$$

50. Differentiate
$$x^2 \sec 4x$$
 w.r.t. 'x'.

51. Differentiate
$$\tan^3 \theta \sec^2 \theta$$
 w.r.t. '\theta'.

52. Differentiate
$$(\sin 2\theta - \cos 3\theta)$$
 w.r.t. ' θ '.

53. Differentiate
$$\cos \sqrt{x} + \sqrt{\sin x}$$
 w.r.t. 'x'.

54. Find
$$\frac{dy}{dx}$$
, if $y = x \cos y$

55. Find
$$\frac{dy}{dx}$$
, if $x = y \sin y$

56. Differentiate
$$\sin x$$
 w. r. t. $\cot x$

57. Differentiate
$$sin^2x$$
 w. r. t. cos^4x

58. Differentiate
$$\cos^{-1} \frac{x}{a}$$
 w.r.t. 'x'.

59. Differentiate
$$\cot^{-1} \frac{x}{a}$$
 w.r.t. 'x'.

60. Differentiate
$$\frac{1}{a}\sin^{-1}\frac{x}{a}$$
 w.r.t. 'x'.

61. Differentiate
$$\sin^{-1} \sqrt{1 - x^2}$$
 w.r.t. 'x'.

62. Prove that
$$\frac{d}{dx}(a^x) = a^x \ln a$$
 by ab-initio method.

63. Find
$$\frac{dy}{dx}$$
, if $y = e^{x^2 + 1}$

63. Find
$$\frac{dy}{dx}$$
, if $y = e^{x^2 + 1}$
64. Find $\frac{dy}{dx}$, if $y = a^{\sqrt{x}}$

- **65.** Differentiate $y = a^x$ w.r.t. 'x'.
- **66.** Find $\frac{dy}{dx}$, if $y = \log_{10}(ax^2 + bx + c)$
- **67.** Differentiate $\ln(x^2 + 2x)$ w.r.t. 'x'.
- **68.** Differentiate $y = e^{f(x)}$ w.r.t. 'x'.
- **69.** Differentiate $(\ln x)^x$ w.r.t. 'x'.
- **70.** Prove that $\frac{d}{dx}(\sinh x) = \cosh x$
- 71. Prove that $\frac{d}{dx}(coshx) = sinhx$ 72. Prove that $\frac{d}{dx}(tanhx) = sech^2x$
- **73.** Find $\frac{dy}{dx}$, if $y = \tanh(x^2)$
- **74.** Find $\frac{dy}{dx}$, if $y = \cosh^{-1}(\sec x)$
- **75.** Find f'(x) if $f(x) = e^{\sqrt{x}-1}$
- **76.** Find f'(x) if $f(x) = x^3 e^{\frac{1}{x}}$
- 77. Find f'(x) if $f(x) = e^x(1 + \ln x)$
- **78.** Find f'(x) if $f(x) = \frac{e^x}{e^{-x} + 1}$
- 79. Find f'(x) if $f(x) = \ln(e^x + e^{-x})$
- **80.** Find f'(x) if $f(x) = \frac{e^{ax} e^{-ax}}{e^{ax} + e^{-ax}}$
- **81.** Find f'(x) if $f(x) = \ln(\sqrt{e^{2x} + e^{-2x}})$
- **82.** Find $\frac{dy}{dx}$, if $y = x^2 \ln \sqrt{x}$
- **83.** Find $\frac{dy}{dx}$, if $y = x\sqrt{\ln x}$
- **84.** Find $\frac{dy}{dx}$, if $y = \frac{x}{\ln x}$
- **85.** Find $\frac{dy}{dx}$, if $y = x^2 \ln \frac{1}{x}$
- **86.** Find $\frac{dy}{dx}$, if $y = \ln \sqrt{\frac{x^2 1}{x^2 + 1}}$
- **87.** Find $\frac{dy}{dx}$, if $y = \ln(x + \sqrt{x^2 + 1})$ **88.** Find $\frac{dy}{dx}$, if $y = \ln(9 x^2)$
- **89.** Find $\frac{dy}{dx}$, if $y = e^{-2x} \sin 2x$
- 90. Find $\frac{dy}{dx}$, if $y = e^{-x}(x^3 + 2x^2 + 1)$ 91. Find $\frac{dy}{dx}$, if $y = xe^{\sin x}$ 92. Find $\frac{dy}{dx}$, if $y = (x + 1)^x$ 93. Find $\frac{dy}{dx}$, if $y = \sinh 3x$ 94. Find $\frac{dy}{dx}$, if $y = \tanh^{-1}(\sin x)$ 95. Find $\frac{dy}{dx}$, if $y = \sinh^{-1}(x^3)$ 96. Find $\frac{dy}{dx}$, if $y = (\ln \tanh x)$

- **97.** Find $\frac{dy}{dx}$, if $y = \sinh^{-1}\left(\frac{x}{2}\right)$

- **98.** Find $f^{iv}(x)$ of $f(x) = \frac{1}{12}x^4 \frac{1}{6}x^3 + \frac{1}{4}x^2 + 2x + 7$
- **99.** Find $\frac{d^2y}{dx^2}$, if $y^3 + 3ax^2 + x^3 = 0$
- **100.** Find y_2 , if $y = \cos(ax + b)$
- **101.** If $y = \sin^{-1} \frac{x}{a}$, then show that $y_2 = x(a^2 x^2)^{-\frac{3}{2}}$
- **102.** Find y_2 , if $y = 2x^5 3x^4 + 4x^3 + x 2$
- **103.** Find y_2 , if $y = (2x + 5)^{3/2}$
- **104.** Find y_2 , if $y = \sqrt{x} + \frac{1}{\sqrt{x}}$
- **105.** Find y_2 , if $x^2 + y^2 = a^2$
- **106.** Find y_2 , if $x^3 y^3 = a^3$
- **107.** Find y_2 , if $x = at^2$, $y = bt^4$
- **108.** Find y_4 , if $y = \sin 3x$
- **109.** Find y_4 , if $y = \cos^3 x$
- 110. Find y_4 , if $y = \ln(x^2 9)$
- 111. Define Power Series.
- 112. Define Maclaurin Series.
- 113. Find the Maclaurin series for $\sin x$.
- 114. Expand a^x in the Maclaurin series.
- 115. Expand $(1+x)^n$ in the Maclaurin series.
- 116. State Taylor's Theorem.
- 117. Apply Maclaurin series Expansion to prove that $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!}$...
- 118. Apply Maclaurin series Expansion to prove that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$...
- 119. Apply Maclaurin series Expansion to prove that $e^{2x} = 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!}$...
- **120.** Define Increasing Function.
- **121.** Define Decreasing Function.
- **122.** Define Critical Point.
- **123.** Define Critical Value.
- **124.** Define Relative Maxima.
- **125.** Define Stationary Point.
- 126. Define Point of Inflexion.
- 127. Determine the intervals in which f is decreasing for $f(x) = \sin x$; $x \in (-\pi, \pi)$
- 128. Determine intervals in which f is increasing/decreasing for $f(x) = \cos x$; $x \in (\frac{-\pi}{2}, \frac{\pi}{2})$
- 129. Determine the intervals in which f is increasing for $f(x) = 4 x^2$; $x \in (-2,2)$
- 130. Determine the intervals in which f is increasing for $f(x) = x^2 + 3x + 2$; $x \in (-4,1)$
- 131. Find the extreme values for $f(x) = x^2 x 2$.
- 132. Find the extreme values for $f(x) = 5x^2 6x + 2$.
- **133.** Find two positive integers whose sum is 30 and their product will be maximum.
- 134. Divide 20 into two parts so that the sum of their squares will be minimum.
- 135. The perimeter of a triangle is 16 cm. If one side is of length 6 cm, what are length of the other sides for maximum area of the triangle?

IMPORTANT LONG QUESTIONS

- 1. Differentiate $\frac{\sqrt{x^2+1}}{\sqrt{x^2-1}}$ w.r.t. 'x'.
- 2. Differentiate $\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}$ w.r.t. 'x'.
- 3. If $y = \sqrt{x} \frac{1}{\sqrt{x}}$, show that $2x \frac{dy}{dx} + y = 2\sqrt{x}$
- **4.** Find $\frac{dy}{dx}$, if $y = \frac{\sqrt{a+x} + \sqrt{a-x}}{\sqrt{a+x} \sqrt{a-x}}$
- 5. Find $\frac{dy}{dx}$, if $y = (1 + 2\sqrt{x})^3 \cdot x^{\frac{3}{2}}$
- **6.** Find $\frac{dy}{dx}$, if $x = \frac{a(1-t^2)}{1+t^2}$, $y = \frac{2bt}{1+t^2}$
- 7. Find $\frac{dy}{dx}$, if $x\sqrt{1+y} + y\sqrt{1+x} = 0$
- **8.** Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$
- **9.** Differentiate $\sin \sqrt{x} \ w.r.t.x$ by ab-initio method.
- **10.** If $y = \tan\left(2\tan^{-1}\frac{x}{2}\right)$, show that $\frac{dy}{dx} = \frac{4(1+y^2)}{(4+x^2)}$
- 11. Differentiate $\cos \sqrt{x} \ w.r.t.x$ by first principle.
- 12. Differentiate $\cos x^2$ w. r. t. x by first principle.
- 13. If $\tan y(1 + \tan x) = 1 \tan x$, show that $\frac{dy}{dx} = -1$
- **14.** If $x = a \cos^3 \theta$, $y = b \sin^3 \theta$, show that $a \frac{dy}{dx} + b \tan \theta = 0$
- **15.** Find $\frac{dy}{dx}$, if $x = a(\cos t + \sin t)$, $y = a(\sin t t \cos t)$
- **16.** Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = \tan^{-1} \frac{x}{y}$
- 17. If $y = \tan(p \tan^{-1} x)$, show that $(1 + x^2)y_1 p(1 + y^2) = 0$
- **18.** If $x = a(\theta \sin \theta)$, $y = a(1 + \cos \theta)$. Then show that $y^2 \frac{d^2y}{dx^2} + a = 0$
- **19.** If $x = sin\theta$, $y = sinm\theta$, then show that $(1 x^2)y_2 xy_1 + m^2y = 0$
- **20.** If $y = e^x \sin x$, show that $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$
- **21.** If $y = e^{ax} \sin x$, show that $\frac{d^2y}{dx^2} 2a\frac{dy}{dx} + (a^2 + b^2)y = 0$
- **22.** If $y = (\cos^{-1} x)^2$, prove that $(1 x^2)y_2 xy_1 2 = 0$
- **23.** If $y = a\cos(\ln x) + b\sin(\ln x)$ prove that $x^2 \frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$
- **24.** Show that $cos(x + h) = cosx hsinx \frac{h^2}{2!}cosx + \frac{h^3}{3!}sinx + \cdots$ and evaluate $cos 61^\circ$.
- **25.** Show that $2^{x+h} = 2^x \left\{ 1 + (\ln 2)h + \frac{(\ln 2)^2 h^2}{2!} + \frac{(\ln 2)^3 h^3}{3!} + \cdots \right\}$
- **26.** Discuss the function defined as $f(x) = \sin x + \frac{1}{2\sqrt{2}}\cos 2x$ for extreme values in the interval $(0,2\pi)$
- 27. Find the maximum and minimum values of the function defined by the following equation occurring in the interval $[0,2\pi]$, $f(x) = \sin x + \cos x$.
- **28.** Show that $y = \frac{\ln x}{x}$ has a maximum value at x = e

- **29.** Show that $y = x^x$ has a minimum value at $x = \frac{1}{e}$
- **30.** A box with a square base and open top is to have a volume of 4 cubic dm. Find the dimensions of the box which will require the least material.

UNIT

3

DEFINITIONS + SUMMARY

DIFFERENTIAL OF A FUNCTION

Let "f" be a differentiable function define by the equation y = f(x) and let δx be the arbitrary increment in x. Then the number $f'(x)\delta x$ is called the differential of the dependent variable "y" and is denoted by dy.

Thus
$$dy = f'(x)\delta x$$

Note

- (i) The increment in the dependent variable "x" is equal to its differential dx i.e., $dx = \delta x$
- (ii) Instead of dy, we can write df, i.e., df = f'(x) dx where f'(x) being coefficient of differential is called **differential coefficient**.

INTEGRATION

The process of finding a such a function whose derivative is given is called *anti-differentiation* or *integration*.

"c" is an arbitrary constant and it is not definite, so $\varphi(x) + c$ is called the indefinite integral of f(x), that is

$$\int f(x) \, dx = \varphi(x) + c$$

- The function f(x) is called the integrand.
- The symbol \int is called integral sign.
- "c" is called the constant of integration.
- $\int ... dx$ indicates that integrand is to be integrated w. r. t. x.

THEOREMS ON ANTI-DERIVATIVES

1. The integral of the product of a constant and a function is equal to the product of the constant and the integral of the function.

In symbols,

$$\int af(x) \, dx = a \int f(x) \, dx$$

where a is a constant.

2. The integral of the sum (or difference) of two functions is equal to the sum (or difference) of their integrals.

In symbols,

$$\int [f_1(x) \pm f_2(x)] \, dx = \int f_1(x) \, dx \pm \int f_2(x) \, dx$$

ANTI-DERIVATIVES OF $[f(x)]^n f'(x)$ AND $[f(x)]^{-1} f'(x)$

1.
$$\int [f(x)]^n f'(x) \, dx = \frac{[f(x)]^{n+1}}{n+1} + c \quad (n \neq -1)$$

2.
$$\int [f(x)]^{-1} f'(x) \, dx = \ln f(x) + c, \quad (f(x) > 0)$$

General Form Simple Form In formulae 1 - 7 and 10 - 14, $a \ne 0$ $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c, (n \neq -1)$ $\int x^{n} dx = \frac{x^{n+1}}{n+1} + c, (n \neq -1)$ $\int \sin(ax+b)\,dx = -\frac{1}{a}\cos(ax+b) + c,$ $\int \sin x \, dx = -\cos x + c$ $\int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b) + c$ $\int \cos x \, dx = \sin x + c$ $\int \sec^2(ax+b) dx = \frac{1}{a} \tan(ax+b) + c$ $\int sec^2 x \, dx = tan \, x + c$ $\int \csc^2(ax+b)dx = -\frac{1}{a}\cot(ax+b) + c$ $\int \csc^2 x \ dx = -\cot x + c$ $\int sec(ax+b)tan(ax+b)dx = \frac{1}{a}sec(ax+b)+c$ $\int \sec x \tan x \, dx = \sec x + c$ $\int cosec (ax+b)cot(ax+b)dx = -\frac{1}{a}cosec(ax+b)+c \qquad \int cosec x cot x dx = cosec x+c$ $\int e^{\lambda x + \mu} dx = \frac{1}{2} \times e^{\lambda x + \mu} + c \quad , \qquad (\lambda \neq 0)$ $\int e^x dx = e^x + c$ $\int a^{\lambda x + \mu} dx = \frac{1}{\lambda \ln a} a^{\lambda x + \mu} + c, \ (a > 0, \ a \neq 1, \ \lambda \neq 0) \qquad \int a^x dx = \frac{1}{\ln a} a^x + c,$ $(a > 0, a \neq 1)$ $\int \frac{1}{ax+b} dx = (ax+b)^{-1} dx$ $\int \frac{1}{x} dx = \ln|x| + c, \quad x \neq 0$ $=\frac{1}{a}\ln|ax+b|+c,(ax+b\neq 0)$ $\int tan(ax+b) dx = \frac{1}{a} \ln |sec(ax+b)| + c$ $\int \tan x \, dx = \ln |\sec x| + c$ $=-\frac{1}{a}\ln\left|\cos(ax+b)\right|+c$ $=-\ln|\cos x|+c$ $\int \cot(ax+b)dx = \frac{1}{a}\ln|\sin(ax+b)| + c$ $\int \cot x \, dx = \ln |\sin x| + c$ $\int \sec{(ax+b)}dx = \frac{1}{a}\ln|\sec{(ax+b)} + \tan{(ax+b)}| + c \qquad \int \sec{x}dx = \ln|\sec{x} + \tan{x}| + c$ $\int \cos(ax+b) dx = \frac{1}{a} \ln \left| \csc(ax+b) - \cot(ax+b) \right| + c \qquad \int \csc x \, dx = \ln \left| \csc x - \cot x \right| + c$

INTEGRATION BY METHOD OF SUBSTITUTION

Sometimes it is possible to convert an integral into a standard form or to an easy integral by a suitable change of a variable. Now we evaluate $\int f(x) dx$ by the method of substitution. Let x be a function of a variable t, that is,

If
$$x = \varphi(t)$$
, then $dx = \varphi'(t)dt$

Putting $x = \varphi(t)$, then $dx = \varphi'(t)dt$ we have

$$\int f(x) dx = \int f(\varphi(t)) \varphi'(t) dt$$

INTEGRATION BY SOME USEFUL SUBSTITUTION

We list below suitable substitutions for certain expressions to be integrated.

Expression Involving

(i)
$$\sqrt{a^2-x^2}$$

(ii)
$$\sqrt{x^2 - a^2}$$

(iii)
$$\sqrt{a^2 + x^2}$$

(iv)
$$\sqrt{x+a} \left(\text{or } \sqrt{x-a} \right)$$

(v)
$$\sqrt{2ax-x^2}$$

(vi)
$$\sqrt{2ax + x^2}$$

Suitable Substitution

$$x = a \sin \theta$$

$$x = a \sec \theta$$

$$x = a \tan \theta$$

$$\sqrt{x+a} = t \text{ (or } \sqrt{x-a} = t)$$

$$x - a = a \sin \theta$$

$$x + a = a \sec \theta$$

INTEGRATION BY PARTS

$$\int f(x) g'(x) dx = f(x) \int g'(x) dx - \int g(x) f'(x) dx = f(x)g(x) - \int g(x) f'(x) dx$$

This is known as the formula for integration by parts.

If we put

$$u = f(x)$$

and
$$dv = g'(x)dx$$

and

Then

$$du = f'(x)dx$$

$$v = g(x)$$

Then above equation can be written as

$$\int u \, dv = uv - \int v \, du$$

ILATE RULE

The **ILATE** Rule is a method for selecting the first and second functions when using the integration by parts method to solve integral.

 T - trigonometric functions

E - exponential functions

1	Inverse Trigonometric (Sin-1x, tan-1x, etc)
L	Logarithmic (log ₃ x, log x, ln x,etc)
A	Algebraic (x3, 3x, etc)
т	Trigonometric (sin x , csc x , etc)
E	Exponential (3×, e×, etc)

Note

ILATE is an acronym for Inverse, Logarithmic, Algebraic, Trigonometric, and Exponential.

INTEGRATION INVOLVING PARTIAL FRACTION

If P(x), Q(x) are polynomial functions and the denominator $(Q(x) \neq 0)$, in the rational function $\frac{P(x)}{O(x)}$, can be factorized into linear and quadratic (irreducible) factors, then the rational function is written as a sum of simpler rational functions, each of which can be integrated by methods of partial fraction which already known to us.

Here we will give examples of the following three cases when the denominator Q(x) contains Non-repeated linear factors. Case I.

Repeated and non-repeated linear factors.
$$\frac{x+7}{(x-1)(x+3)} = \frac{A}{(x-1)} + \frac{B}{(x+3)}$$
Repeated and non-repeated linear factors.

Case II.

$$\frac{5x+7}{(x-1)(x+3)^2} = \frac{A}{(x-1)} + \frac{B}{(x+3)} + \frac{C}{(x+3)^2}$$

Linear and non-repeated irreducible quadratic factors or non-repeated Case III. irreducible quadratic factors.

$$\frac{11x+3}{(x-3)(x^2+9)} = \frac{A}{(x-3)} + \frac{Bx+C}{(x^2+9)}$$

THE DEFINITE INTEGRAL

If f(x) is continuous on the interval [a, b] and if F(x) is any indefinite integral, then

$$\int_{a}^{b} f(x) \, dx = |F(x)|_{a}^{b} = F(b) - F(a)$$

is called *definite integral* of f(x) between the limits "a" and "b"

- The interval [a, b] is called *range of integration*.
- The function f(x) is known as the *integrand*.
- While a and b are known as *lower* and *upper limits* of integration respectively.

FUNDAMENTAL THEOREM OF CALCULUS

If f(x) is continuous on the interval [a, b] and $\varphi'(x) = f(x)$, that is, $\varphi(x)$ is any antiderivative of f on [a, b], then

$$\int_{a}^{b} f(x) \, dx = \varphi(b) - \varphi(a)$$

PROPERTIES OF DEFINITE INTEGRAL

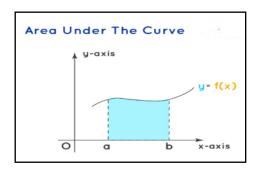
If f(x) and g(x) are two continuous functions on the interval [a, b], then

(i)
$$\int_a^a f(x) \ dx = 0$$

(ii)
$$\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$$

(iii)
$$\int_a^b cf(x) dx = c \int_a^b f(x) dx$$
 (Where c is any constant)

(iv)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$


(v)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

APPLICATION OF DEFINITE INTEGRAL

Area Under the Curve

 $\int_a^b f(x) dx$ gives the area under the cure y = f(x)from x = a to x = b and the x-axis.

$$Area = \int_{a}^{b} f(x) \ dx$$

DIFFERENTIAL EQUATION

An equation containing at least one derivative of a dependent, variable with respect to an independent variable is called differential equation.

£xample: -

(i)
$$y \frac{dy}{dx} + 2x = 0$$

(ii)
$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} - 2x = 0$$

ORDER OF DIFFERENTIAL EQUATION

The order of a differential equation is the order of the highest derivative it contains.

(i)
$$y\frac{dy}{dx} + 2x = 0$$
 (Ord

(i)
$$y \frac{dy}{dx} + 2x = 0$$
 (Order is 1)
(ii)
$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} - 2x = 0$$
 (Order is 2)

DEGREE OF DIFFERENTIAL EQUATION

The degree of the differential equation is the highest power of the differential coefficient present in the equation.

(i)
$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2x = 0$$
 (Degree 1)

(i)
$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} - 2x = 0$$
 (Degree 1)
(ii)
$$y \left(\frac{dy}{dx}\right)^2 + 2x = 0$$
 (Degree 2)

MCQ's

Choose the correct Option.

1	If $y = x^2$ then dy	is:					
a	2x		2x dx	c	$x^2 dx$	d	$2x^2$
2	Differential of y is	deı	noted by:				
a	dy'	b	dy	c	dy	d	dx
	·		\overline{dx}		•		
3	If $y = x^2 - 1$ and	x c	hanges from 3 to 3.	02	then $dy = $		
a	0.1	b	0.12	c	0.012	d	0.21
4	If $V = x^3$, then dif	fere	ential of V is:				
a	$3x^2 dx$	b	$3x^2$	c	$x^3 dx$	d	$3x^2 dy$
5	$f(x + \delta x) \approx$		4				
a	f(x)dx	b	f(x) - f'(x)dx	c	f(x) + f'(x)dx	d	-f'(x)dx
6	$\int (3x^2 + 2x) dx \text{ is}$	eq	ual to:				
a	6x + 2	b	$x^3 + x^2$	c	3x + 2	d	$x^3 - x^2$
7	Find dy for $y = $	\overline{x} ,v	when x changes from	n 4	to 4.41		
a	0.1		0.1002	c	0.1025	d	1.2
8	Find dy for $y = x$	χ^2 -	+2x, when x change	ges	from 2 to 1.8)	
a	-1.02		-0.012		-0.2	d	-1.2
9	Solve $\frac{1}{y}dy = \frac{1}{x}dx$	1			. 4 4		
a	y = xc	b	y = -xc	c	$y = x^2 + c$	d	xy = c
10	$d(xy) = \underline{\hspace{1cm}}$						
a	x dx + y dy	b	(x+y)dx	c	x dy + y dx	d	
11	$\int \frac{\sin 2x}{4\sin x} dx = \underline{\hspace{1cm}}$	_	\				
a		b	$2\sin 2x + c$	c	$\frac{1}{2}\sin x + c$	d	$2\sin x + c$
12	$\int \frac{1}{x\sqrt{x^2 - 1}} = \underline{\qquad}$ $\sin^{-1} x$	_					
a	$\sin^{-1} x$	b	$tan^{-1} x$	c	$\sec^{-1} x$	d	$cosec^{-1} x$
13	$\int (2x+3)^{\frac{1}{2}} dx =$		Öllm		HUL		
a	$\frac{(2x+3)^{\frac{3}{2}}}{2} + c$	b	$\frac{(2x+3)^{\frac{3}{2}}}{3} + c$	c	$\frac{(2x+3)^{\frac{1}{3}}}{2} + c$	d	$\frac{(2x+3)^{-\frac{1}{2}}}{3} + c$
14	$\int \sec x dx = \underline{\hspace{1cm}}$	-					
a	$\sec x + \tan x$	b	$sec^2 x$	c	$\ln \sec x - \tan x $	d	$\ln \sec x + \tan x $
15	$\int (a-2x)^{\frac{3}{2}} dx =$						
a	$\frac{(a-2x)^{\frac{3}{2}}}{5}+c$	b	$\frac{(a-2x)^{\frac{5}{2}}}{5}+c$	С	$-\frac{(a-2x)^{\frac{5}{2}}}{5}+c$	d	$\frac{3(a-2x)^{\frac{5}{2}}}{5}+c$
16	$\int \cos x dx = \underline{\hspace{1cm}}$						

a	$1 - \sin^2 x + c$	b	$\sqrt{1-\sin^2 x}$	c	$\sin x + c$	d	$-\sin x + c$				
17	$\frac{1 - \sin^2 x + c}{\int \tan \frac{\pi}{4} dx = \underline{\qquad}}$ $\ln \sin \frac{\pi}{4}$										
a	$\ln \sin \frac{\pi}{4}$	b	x	c	$\sec^2\frac{\pi}{4}$	d	$\frac{x}{4}$				
18	$\int e^{ax} dx = \underline{\hspace{1cm}}$										
a	$e^{ax} + c$	b	$ae^{ax}+c$	c	$\frac{e^{ax}}{a} + c$	d	$e^x + c$				
19											
a	$-\frac{1}{5}\cos x + c$	b	$-\frac{1}{5}\cos 5x + c$	c	$\frac{1}{5}\sin x + c$	d	$\frac{1}{5}\cos 5x + c$				
20	$\int \frac{a}{x} dx = \underline{\hspace{1cm}}$										
a	ax + c	b	$a \ln x + c$	С	$-\frac{a}{x^2} + c$	d	$\frac{1}{a}\ln x + c$				
21	$\int \frac{2}{x+2} dx = \underline{\hspace{1cm}}$)					
a	$2\ln x+2 +c$	Ъ	$\ln x+2 +c$	c	$\ln x+2 ^2 + c$	d	2				
22											
a	1+c	b	x + c	c	-x+c	d	2x				
23	Inverse of $\int dx$	is:			A A 4	М					
a	$\frac{dx}{dy}$	b	$\frac{d}{dx}$	c	$\frac{dy}{dx}$	d	$\frac{dx}{dy}$				
24	$\int \frac{1}{1 + \cos x} dx =$				U						
a	$\frac{1}{2} \tan \frac{x}{2}$	b	$\tan \frac{x}{2}$	С	$\cot \frac{x}{2}$	d	$\frac{1}{2}\cot\frac{x}{2}$				
25	$\int \tan^2 x dx = \underline{\hspace{1cm}}$		21 1		1						
a	$2 \tan x + c$	b	$\tan x + c$	c	$\tan x + x + c$	d	$\tan x - x + c$				
26	$\int \csc x dx = \underline{}$			I	JUZ						
a	$-\csc x \cot x + c$	b	$\ln \csc x $ $-\cot x +c$	c	$\ln \csc x + \cot x + c$	d	$\ln \sec x + \tan x $				
27	$\int \tan x dx = \underline{\hspace{1cm}}$	_									
a	$\ln \sec x + c$	b	$\ln \csc x + c$	c	$\ln \sin x + c$	d	$\ln \cot x + c$				
28	Anti-derivative of		•								
a	$\ln \cos x + c$	b	$\ln \sin x + c$	c	$-\ln \sin x + c$	d	$-\ln \cos x + c$				
29	$\int \sin x dx = \underline{\hspace{1cm}}$	-									
a	$\cos x + c$	b	$\sin x + c$	c	$-\sin x + c$	d	$-\cos x + c$				
30	$\int 3^{\lambda x} dx = \underline{\qquad}$										

a	$\frac{3^{\lambda x}}{11 \cdot 3} + c$	b	$\frac{3^{\lambda x}}{\lambda} \ln 3 + c$	c	$\frac{3^{\lambda x}}{\ln 3} + c$	d	$\frac{\lambda 3^{\lambda x}}{\ln 3} + c$
31	$\frac{3^{3/3}}{\lambda \ln 3} + c$ $\int \frac{1}{ax + b} dx = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		Ι Λ		L IN 3		1 10.5
a	$\ln ax+b +c$	b	$\frac{1}{a}\ln ax+b +c$	c	$a \ln ax + b + c$	d	$ax \ln ax + b + c$
32	$\int a^x dx = \underline{\hspace{1cm}}$		<u> </u>		L		
a	$\frac{a^x}{\ln a} + c$	b	$a^x + c$	c	$\frac{\ln a}{a^x} + c$	d	$a^x \ln a + c$
33	$\int \sin ax dx = \underline{\hspace{1cm}}$	_					
a	$\frac{-\cos ax}{a} + c$	b	$\cos ax + c$	c	$a \csc x + c$	d	$a \sec ax + c$
34	$\int \cos 2x dx = \underline{\hspace{1cm}}$						
a	$-2\sin 2x + c$	b	$2\sin 2x + c$	С	$\frac{-\sin 2x}{2} + c$	d	$\frac{\sin 2x}{2} + c$
35	$\int \sec^2 2x dx = \underline{\hspace{1cm}}$				5		
a	$\frac{\tan 2x}{2} + c$	ь	$\tan 2x + c$	c	$\frac{\tan x}{2} + c$	d	$2 \tan 2x + c$
36	$\int (-\sin x) dx = 0$	1					
a	cos x	b	sin x	c	$-\sin x$	d	$-\cos x$
37	$\int (\sin 3x) dx = \underline{\ }$	y				Ų	
a	$\frac{\cos 3x}{3} + c$	b	$\frac{-\cos 3x}{3} + c$	c	$3\cos 3x + c$	d	$-3\cos 3x + c$
38	$\int 3^x dx = \underline{\hspace{1cm}}$				7		
a	$3^x + c$	b	$3^x \ln 3 + c$	c	$\frac{3^x}{\ln 3} + c$	d	$\frac{3^x}{3\ln 3} + c$
39	$\int (e^x + 1) dx = \underline{\ }$		Sha		Daz		
a	$e^x + c$	b	$e^x + x + c$	c	$e^{x} + 1 + c$	d	$e^x + x^2 + c$
40	$\frac{e^x + c}{\int \frac{1}{x^2} dx} = \underline{\qquad}$						
a	$\ln x + c$	b	$\ln x^2 + c$	c	$\frac{-1}{x} + c$	d	$\frac{1}{x} + c$
41	$\int \sec x \tan x dx =$	=					
a	tan x	b	$sec^2 x$	c	$tan^2 x$	d	sec x
42	$\int x(\sqrt{x}+1)dx$						
a	$\frac{2}{3}x^{3/2} + c$	b	$\frac{2}{5}x^{5/2} + \frac{x^2}{2} + c$	c	$\frac{2}{5}x^{5/2}+c$	d	$x^{3/2} + x + c$
43	$\int x^n dx \text{ for } (n \neq$	-1)				

a	$\frac{x^{n+1}}{n} + c$	b	$\frac{x^{n-1}}{n-1} + c$	c	$\frac{x^{n+1}}{n+1} + c$	d	$nx^{n-1}+c$
44	$\int 5^{2x} dx = \underline{\qquad}$		n-1		<u> n + 1 </u>		
a	5 ^{2x}	b	$2(5^{2x})$	c	$5^{2x} \ln 5$	d	$\frac{5^{2x}}{2\ln 5} + c$
45	$\int (\sec^2 \theta - \tan^2 \theta)$	9) d	$\theta = $				I Z III J
a	$\theta + c$	b	$\sin\theta + \cos\theta + c$	c	$\tan \theta - \cot \theta + c$	d	$\cot \theta + \tan \theta + c$
46	$\int \frac{1}{\cos^2 x} dx = \underline{\qquad}$						
a	$\frac{1}{\sin^2 x}$	b	$\tan x + c$	c	$\sec^2 x + c$	d	$cosec^2 x + c$
47	$\int x^{-1} dx = \underline{\qquad}$						
a	0	b	$\ln x + c$	c	$-x^{-2}+c$	d	$-\ln x + c$
48	$\int e^{\sin x} \cos x dx =$				_		
a	$e^{\cos x} + c$	b	$e^{\sin x} + c$	c	$-e^{\cos x}+c$	d	$-e^{\sin x}+c$
49	$\int a^{x^2} x dx = \underline{\hspace{1cm}}$						
a	$\frac{a^x}{\log_e a} + c$	b	$\frac{a^{x^2}}{2\log_e a} + c$	c	$\frac{a^{x^2}}{2\log_a e} + c$	d	$\frac{a^x}{2\log_e a} + c$
50	$\int e^{\tan x} \sec^2 x dx$			L	21084		
a	$e^{\tan x}$	b	$e^{-\tan x}$	c	$e^{\cot x}$	d	$e^{-\cot x}$
51	$\int \frac{\ln x}{x} dx = \underline{\hspace{1cm}}$		• · ·				
a	$\ln(\ln x)$	b	$\frac{(\ln x)^2}{2}$	c	ln x	d	$\frac{\ln x}{2}$
52	$\int \frac{e^{\tan^{-1}x}}{1+x^2} dx = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$: J ±		
a	$e^{\sec x} + c$	b	$e^{\tan x} + c$	c	$e^{\cot^{-1}x} + c$	d	$e^{\tan^{-1}x} + c$
53	$\int \frac{a}{x\sqrt{x^2 - 1}} dx =$		- in law				
a	$a \tan^{-1} x + c$	b	$-acosec^{-1}x + c$	c	$-asec^{-1}x + c$	d	$asec^{-1}x + c$
54	$\int \frac{f'(x)}{f(x)} dx = \underline{\hspace{1cm}}$	_					
a	$\ln x + c$	b	$\ln f(x) + c$	c	$\ln f'(x) + c$	d	f(x) + c
55	$\int \sqrt{2x+3} (2dx)$	=_					
a	$\frac{2}{3}(2x+3)^{3/2}$	b	$\frac{3}{2}(2x+3)^{3/2}$	c	$-(2x+3)^{3/2}$	d	$-\frac{3}{2}(2x+3)^{3/2}$
56	$\int \sin x \cos x dx =$	=					
a	$\frac{\cos 2x}{2} + c$	b	$\frac{-\cos 2x}{2} + c$	С	$\frac{\sin^2 x}{2} + c$	d	$\frac{\cos^2 x}{2} + c$

57	$\int \frac{1}{x \ln x} dx \text{ equals:}$						
a	$\ln x$	b	x	c	ln(ln x)	d	$\frac{(\ln x)^2}{2}$
58	$\int \sec^2 x \tan x dx$	_					
a	$\sec x \tan^2 x$	b	$\frac{\sec^2 x}{3} + c$	c	$\frac{\tan^2 x}{2} + c$	d	$\frac{\sec^2 x \tan x dx}{3}$
59	$\int \sec 5x \tan 5x dx$	<i>x</i> =					· ·
a	$5 \sec 5x + c$		$\frac{\sec x}{5} + c$	С	$\frac{\sec 5x}{5} + c$	d	$\frac{\tan 5x}{5} + c$
60	$\int \frac{\sec^2 x}{\sqrt{\tan x}} dx = \underline{\hspace{1cm}}$						
a	$2\sqrt{\tan x} + c$	b	$-2\sqrt{\tan x} + c$	c	$\sqrt{\tan x} + c$	d	$\tan x + c$
61	$\int \frac{\cot x}{\ln(\sin x)} dx = 1$		- 1				
a				c	$\ln \sin x + c$	d	$\ln(\ln\sin x) + c$
62	$\ln \tan x + c$ $\int \frac{e^x}{e^x + 3} dx = \underline{\qquad}$ $\ln e^x + 3 $ $\int \frac{1}{(1 + x^2) \tan^{-1} x} dx = \underline{\qquad}$						
a	$\ln e^x + 3 $	b	$e^{2x}+c$	c	$e^0 + c$	d	$e^{2x} + 3 + c$
63	$\int \frac{1}{(1+x^2)\tan^{-1}x}$	$\frac{1}{x}dx$	x =		7 7		
a	111((())) (_	$\ln \sin x + c$	c	$\ln(\sin x)^2 + c$	d	None
64	$\int \frac{x}{\sqrt{4+x^2}} dx = 1$	y					
a	$\frac{\sqrt{4+x^2}}{\sqrt{4+x^2}+c}$	b	$\frac{1}{2}\sqrt{4+x^2}+c$	c	$\ln\sqrt{4+x^2}+c$	d	None
65	a 1						
a	$\cos^{-1}\left(\frac{x}{a}\right) + c$	b	$\sin^{-1}\left(\frac{x}{a}\right) + c$	c	$\frac{1}{a}\cos^{-1}\left(\frac{x}{a}\right) + c$	d	$\frac{1}{a}\sin^{-1}\left(\frac{x}{a}\right) + c$
66	$\int \frac{1}{x^2 + 4} dx = \underline{\hspace{1cm}}$		Shal	1	ház.		
a	$\frac{1}{2}\tan^{-1}\frac{x}{2} + c$	b	$\tan^{-1}\frac{x}{2} + c$	С	$2\tan^{-1}\frac{x}{2}+c$	d	$\tan^{-1} 2x + c$
67	$\int \frac{1}{1+x^2} dx = \underline{\qquad}$ $\cos^{-1} x$						
a	$\cos^{-1} x$	b	$\cot^{-1} x$	c	$\tan^{-1} x$	d	$sec^{-1}x$
68			-				
a	$\int \frac{1}{\sqrt{5 - x^2}} dx = 1$ $\sin^{-1} \left(\frac{5}{x}\right) + c$	b	$\sin^{-1}\left(\frac{x}{5}\right) + c$	С	$\sin^{-1}\left(\frac{\sqrt{5}}{x}\right) + c$	d	$\sin^{-1}\left(\frac{x}{\sqrt{5}}\right) + c$
69			on to integrate $\sqrt{x^2}$		$\overline{u^2}$:		
a 70	$x = a\sin\theta$	b	$x = a \cos \theta$	•	$x = a \sec \theta$	d	$x = a \tan \theta$
70		-	on to integrate $\sqrt{a^2}$.1	w = a ton 0
a	$x = a\sin\theta$	b	$x = a \cos \theta$	c	$x = a \sec \theta$	d	$x = a \tan \theta$

71	The suitable substitution to integrate $\frac{1}{x\sqrt{x^2-a^2}}$:										
a	$x = a \sin \theta$		$x = a \cos \theta$		$x = a \sec \theta$	d	$x = a \tan \theta$				
72	$\int \ln x dx = \underline{\hspace{1cm}}$										
a	$x \ln x + x + c$	b	$x \ln x - x + c$	c	$x - x \ln x + c$	d	$-x \ln x - x + c$				
73	$\int e^{-x}(\cos x - \sin x) dx = \underline{\qquad} -$										
a	$e^{-x}\sin x + c$	b	$e^{-x}\cos x + c$	c	$e^x \sin x + c$	d	$e^x \cos x + c$				
74	$\int e^x \left(\frac{1}{x} + \ln x\right) dx = \underline{\qquad}$										
a	$e^x + c$	b	$e^x \ln x + c$	c	$e^x + \ln x + c$	d	$\ln x + c$				
75	$\int e^x(\cos x + \sin x)$										
a	$e^{-x}\sin x + c$	b	$e^{-x}\cos x + c$	c	$e^x \sin x + c$	d	$e^x \cos x + c$				
76	$\int e^{2x}(-\sin x + 2$										
a	$e^{2x}\cos x + c$	b	$e^{2x}\sin x + c$	c	$-e^{2x}\cos x + c$	d	$-e^{2x}\sin x + c$				
77	$\int e^{ax} (af(x) + f')$				<u></u>						
a	$e^{ax}a.f(x)$	b	$e^{ax}f'(x)$	c	$e^{ax}f(x)$	d	$e^{ax}a.f'(x)$				
78	$\int e^x(x+1)dx =$	44			Y.)		4				
a	$e^x + c$	b	$xe^x + c$	c	$-e^x + c$	d	$-xe^x-c$				
79	$\int_{1}^{2} (x^2 + 1) dx = \underline{\ }$	•		ŀ							
a	$\frac{10}{3}$	b	$\frac{3}{10}$	С	π	d	$\frac{\pi}{2}$				
80	$\int_{a}^{x} 3x^2 dx = \underline{\hspace{1cm}}$		1 .1								
a	$x^{3} + a^{3}$	b	$x^3 - a^3$	c	$3x^3$	d	x^3				
81	$\int_{0}^{\pi} \cos x dx = \underline{\qquad}$		Öllm		nuz						
a	-1	b	1	c	0	d	2				
82	$\int_{0}^{\pi} \sin x dx = \underline{\qquad}$										
a	-1	b	1	c	0	d	2				
83	$\int_{-\pi}^{\pi} \sin x dx = \underline{\qquad}$	-									
a	-1	b	1	c	0	d	2				

	2						1
84	$\int_{1}^{3} dx$						
	$\int \frac{dx}{x^2 + 9} = \underline{\hspace{1cm}}$						
	0						_
a	$\frac{\pi}{}$	b	$\frac{12}{\pi}$	c	_ 12	d	$-\frac{\pi}{}$
	12		$\overline{\pi}$		π		12
85	π [
	$\int \sec x \tan x dx =$	=					
	<i>J</i> 0						
a	0	b	1	c	-2	d	2
86	$\frac{\pi}{4}$						
	[aaa u du -						
	$\int \cos x \ dx = \underline{\hspace{1cm}}$						
	1	1.	2		/-	1	1
a	1	b	2	C	$\sqrt{2}$	a	$\frac{1}{\sqrt{2}}$
0.5	1						√2
87	$\int_{1}^{1} \frac{1}{1+x^2} dx = \underline{\qquad}$						
	$\int \frac{1+x^2}{1+x^2} dx = $						
	σ - 1 λ 0				<u> </u>		
a	$\frac{\pi}{4}$	b	$\frac{4}{\pi}$	c	$\frac{-\pi}{4}$	d	$\left \begin{array}{c} 4 \\ - \end{array} \right $
0.0	4		π		4		π
88	ľ						
	$\int f(x) \ dx =$	4					4
	a						
a	b	b	a	c	a	d	None
	$-\int_{0}^{\infty}f(x)dx$		$-\int f(x) dx$		$\int f(x) dx$		Ttolic
	$\int \int (x) dx$		j j (st) dest				
89	$\frac{a}{\frac{\pi}{4}}$		D		D		
0)	•						Ψ.
	$\int \sec^2 x \ dx = \underline{\hspace{1cm}}$	_					
	<i>J</i> 0				7		
a	5	b	4	С	2	d	1
90	$\frac{\pi}{4}$						
	•		-		625		
	$\int \sec^2 x \ dx = _$	_			baż		
	$\frac{J}{4}$						
a	1	b	2	С	0	d	3
91	π				<u> </u> -		-
	$3 \int \sin x dx = \underline{\hspace{1cm}}$						
a	$\frac{-\pi}{1}$	b	2	c	0	d	3
92	1	3	<u> </u>		<u> </u>		
	$\int x dx = \underline{\hspace{1cm}}$						
	J 121 42						
a	1	Ъ	2	c	0	d	1/
		U	4		U	u	$^{1}/_{2}$
93	c b						
	$\int f(x) dx + \int f($	(x)	$dx = \underline{\hspace{1cm}}$				
	J J a c						

a	$\int_{a}^{b} f(x) dx$	b	$\int_{b}^{a} f(x) dx$		$\int_{-a}^{b} f(x) \ dx$	d	$\int_{c}^{a} f(x) dx$			
94	The area under the cure $y = f(x)$ from $x = a$ to $x = b$ and the x-axis is denoted by:									
a	$\int_{a}^{b} f(x) dx$	b	$\int_{a}^{b} y dx$	c	$\int_{a}^{b} f(x) dy$	d	Both a and b			
95	The order of differential equation $x \frac{d^2y}{dx^2} + \frac{dy}{dx} - 2 = 0$ is:									
a	1	b	2	c	0	d	3			
96	The order of differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + 2x = 0$ is:									
a	1	b	2	c	0	d	3			
97	The order of $\frac{dy}{dx}$ =	$\frac{4}{3}x^{\frac{3}{3}}$	$x^3 + x - 3$ is:							
a	1	b	2	c	0	d	3			
98	The order of differ	ent	ial equation $y \frac{dy}{dx} + z$	2 <i>x</i> :	= 0 is:					
a	1	b	2	c	0	d	3			
99	The solution of dif	fere	ential equation $\frac{dy}{dx} =$	- <u>J</u>	is:					
a	$y = xe^{-x}$	b	$y = ce^{-x}$	c	$y = e^x$	d	$y = ce^x$			
100	-		ential equation y dx	_						
a	x + y = c	b	$ \ln xy = 0 $	c	xy = c	d	None			
101	The solution of dif	fere	ential equation $\frac{dy}{dx} =$	se	$c^2 x$ is:	Ų				
a	$y = \cos x + c$	Ъ	$y = \sec x + c$	c	$y = \sin^2 x + c$	d	$y = \tan x + c$			
102	Applying initial va	lue	conditions in soluti	on	of differential equat	ions	s, we get:			
a	General solution	b	Particular solution	С	No solution	d	Infinite solution			
103	The solution of dif	fere	ential equation $\frac{dy}{dx} =$	1 i	s:					
a	$y = e^x + c$	b	y = x + c	С	$y = \ln x$	d	$y = ce^{-x}$			
104	The solution of dif	fere	ential equation $\frac{dy}{dx} =$	$\frac{y^2}{e^-}$	$\frac{1}{x}$ is:		1			
a	$y = \tan(e^{-x} + c)$	b	$y = \tan^{-1}(e^{-x} + c)$	c	$y = \tan(e^x + c)$	d	$y = \tan^{-1}(e^x + c)$			
105	The solution of dif	fere	ential equation $x \frac{dy}{dx}$	= 1	+y is:					
a	y = x - 1	b	y = cx + 1		y = cx - 1	d	y = x + c			

MCQ's Answers Key

1	2	3	4	5	6	7	8	9	10
b	c	b	a	c	b	c	d	a	c
11	12	13	14	15	16	17	18	19	20
c	c	b	d	c	c	b	c	ь	ь
21	22	23	24	25	26	27	28	29	30
a	b	b	b	d	b	a	ь	d	a
31	32	33	34	35	36	37	38	39	40
b	a	a	d	a	a	b	c	b	c
41	42	43	44	45	46	47	48	49	50
d	b	c	d	a	b	b	b	b	a
51	52	53	54	55	56	57	58	59	60
b	d	c	b	a	c	c	c	c	a
61	62	63_	64	65	66	67	68	69	70
d	a	a	a	b	a	c	d	c	a
71	72	73	74	75	76	77	78	79	80
c	b	a	b	c	a	c	ь	a	ь
81	82	83	84	85	86	87	88	89	90
c	d	c	a	c	d	a	b	d	b
91	92	93	94	95	96	97	98	99	100
c	d	a	d	b	b	a	a	b	c
101	102	103	104	105					_
d	a	b	c	c					

IMPORTANT SHORT QUESTIONS

- 1. Define differential equation.
- 2. Find δy and dy of the function $f(x) = x^2$, when x = 2 and dx = 0.01.
- 3. Using differentials find $\frac{dy}{dx}$ when $\frac{y}{x} \ln x = \ln c$.
- 4. Find δy and dy in the case, $y = x^2 1$ when x changes from 3 to 3.02
- $y = x^2 + 2x$ when x changes from 2 to 1.8 5. Find δy and dy in the case,
- $y = \sqrt{x}$ when x changes from 4 to 4.41 **6.** Find δy and dy in the case,
- 7. Using differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ in the equation xy + x = 4
- **8.** Using differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ in the equation $x^2 + 2y^2 = 16$
- 9. Using differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ in the equation $x^4 + y^2 = xy^2$
- 10. Using differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$ in the equation $xy \ln x = c$
- $\sqrt[4]{17}$ 11. Use differentials to approximate the value of
- $(31)^{1/5}$ 12. Use differentials to approximate the value of
- **13.** Use differentials to approximate the value of cos 29°
- 14. Find the approximate increase in the volume of a cube if the length of its each edge changes from 5 to 5.02.
- **15.** Evaluate $\int (x+1)(x-3) dx$
- **16.** Evaluate $\int x\sqrt{x^2-1} dx$
- 17. Evaluate $\int \frac{x}{x+2} dx$
- **18.** Evaluate $\int \frac{1}{\sqrt{x}(\sqrt{x}+1)} dx$
- 19. Evaluate $\int \frac{dx}{\sqrt{x+1}-\sqrt{x}}$ 20. Evaluate $\int \frac{\sin x + \cos^3 x}{\cos^2 x \sin x} dx$ 21. Evaluate $\int \frac{3-\cos 2x}{1+\cos 2x} dx$ 22. Evaluate $\int (3x^2 2x + 1) dx$

- **23.** Evaluate $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$
- **24.** Evaluate $\int x(\sqrt{x}+1) dx$
- **25.** Evaluate $\int (2x+3)^{\frac{1}{2}} dx$
- **26.** Evaluate $\int (\sqrt{x} + 1)^2 dx$
- **27.** Evaluate $\int \left(\sqrt{x} \frac{1}{\sqrt{x}}\right)^2 dx$
- **28.** Evaluate $\int \frac{3x+2}{\sqrt{x}} dx$
- **29.** Evaluate $\int \frac{\sqrt{y}(y+1)}{y} dy$
- **30.** Evaluate $\int \frac{(\sqrt{\theta}-1)^2}{\sqrt{\alpha}} d\theta$

- **31.** Evaluate $\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$
- **32.** Evaluate $\int \frac{e^{2x} + e^x}{e^x} dx$
- 33. Evaluate $\int \frac{1-x^2}{1+x^2} dx$
- **34.** Evaluate $\int \frac{ax}{\sqrt{x+a} + \sqrt{x}}$
- **35.** Evaluate $\int (a-2x)^{\frac{3}{2}} dx$
- **36.** Evaluate $\int \frac{(1+e^x)^3}{e^x} dx$
- **37.** Evaluate $\int \sin(a+b)x \, dx$
- **38.** Evaluate $\int \sqrt{1-\cos 2x} \, dx$
- **39.** Evaluate $\int \sin^2 x \, dx$
- **40.** Evaluate $\int \frac{1}{1+\cos x} dx$
- **41.** Evaluate $\int \frac{ax+b}{ax^2+2bx+c} dx$
- **42.** Evaluate $\int \cos 3x \sin 2x \, dx$
- **43.** Evaluate $\int \frac{\cos 2x 1}{1 + \cos 2x} dx$
- **44.** Evaluate $\int \tan^2 x \, dx$
- **45.** Evaluate $\int \frac{a \, dt}{2\sqrt{at+b}}$
- **46.** Evaluate $\int \frac{x}{\sqrt{4+x^2}} dx$
- **47.** Evaluate $\int x\sqrt{x-a} \, dx$
- **48.** Evaluate $\int \frac{\cot \sqrt{x}}{\sqrt{x}} dx$
- **49.** Evaluate $\int \csc x \, dx$
- **50.** Evaluate $\int \sec x \, dx$
- **51.** Evaluate $\int \frac{dx}{x(\ln 2x)^3}$
- **52.** Evaluate $\int a^{x^2} x \, dx$
- **53.** Evaluate $\int \frac{1}{\sqrt{a^2-x^2}} dx$
- **54.** Evaluate $\int \frac{-2x}{\sqrt{4-x^2}} dx$
- **55.** Evaluate $\int \frac{dx}{x^2 + 4x + 13}$
- **56.** Evaluate $\int \frac{x^2}{4+x^2} dx$
- **57.** Evaluate $\int \frac{1}{x \ln x} dx$
- **58.** Evaluate $\int \frac{e^x}{e^x + 3} dx$
- **59.** Evaluate $\int \frac{x+b}{(x^2+2bx+c)^{1/2}} dx$
- **60.** Evaluate $\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$
- **61.** Evaluate $\int \frac{dx}{(1+x^2)^{3/2}}$
- **62.** Evaluate $\int \frac{1}{(1+x^2)\tan^{-1}x} dx$

- **63.** Evaluate $\int \frac{\sin \theta}{1 + \cos^2 \theta} d\theta$

- 64. Evaluate $\int \frac{dx}{\sqrt{a^2 x^4}} dx$ 65. Evaluate $\int \frac{\cos x}{\sin x \ln \sin x} dx$ 66. Evaluate $\int \frac{x+2}{\sqrt{x+3}} dx$ 67. Evaluate $\int \frac{dx}{\frac{1}{2} \sin x + \frac{\sqrt{3}}{2} \cos x}$
- **68.** Evaluate $\int x \cos x \, dx$
- **69.** Evaluate $\int xe^x dx$
- **70.** Evaluate $\int x \tan^2 x \, dx$
- **71.** Evaluate $\int x^5 \ln x \, dx$
- 72. Evaluate the integral by parts: $\int x \sin x \, dx$
- 73. Evaluate the integral by parts: $\int \ln x \, dx$
- **74.** Evaluate the integral by parts: $\int x \ln x \, dx$
- **75.** Evaluate the integral by parts: $\int x^2 \ln x \, dx$
- **76.** Evaluate the integral by parts: $\int x^3 \ln x \, dx$
- 77. Evaluate the integral by parts: $\int x^4 \ln x \, dx$
- **78.** Evaluate the integral by parts: $\int \tan^{-1} x \, dx$
- **79.** Evaluate the integral by parts: $\int x^2 \sin x \, dx$
- **80.** Evaluate the integral by parts: $\int x^2 \tan^{-1} x \, dx$
- **81.** Evaluate the integral by parts: $\int x \tan^{-1} x \, dx$
- 82. Evaluate the integral by parts: $\int x \sin^{-1} x dx$
- **83.** Evaluate the integral by parts: $\int x \sin x \cos x \, dx$
- **84.** Evaluate the integral by parts: $\int (\ln x)^2 dx$
- **85.** Evaluate $\int \sec^4 x \, dx$
- **86.** Evaluate $\int e^x \left(\frac{1}{x} + \ln x\right) dx$
- **87.** Evaluate $\int e^x(\cos x + \sin x) dx$
- 88. Evaluate $\int e^{ax} \left(a \sec^{-1} x + \frac{1}{x\sqrt{x^2 1}} \right) dx$ 89. Evaluate $\int e^{3x} \left(\frac{3 \sin x \cos x}{\sin^2 x} \right) dx$
- **90.** Evaluate $\int e^{2x} (-\sin x + 2\cos x) dx$
- **91.** Evaluate $\int \frac{xe^x}{(1+x)^2} dx$
- **92.** Evaluate $\int e^{-x} (\cos x \sin x) dx$
- **93.** Evaluate $\int \frac{e^{m \tan^{-1} x}}{1+x^2} dx$
- **94.** Evaluate $\int \frac{2x}{1-\sin x} dx$
- **95.** Evaluate $\int \frac{e^x(1+x)}{(2+x)^2} dx$
- **96.** Evaluate $\int \frac{2a}{x^2-a^2} dx$, (x > 0)
- **97.** Evaluate $\int \frac{3x+1}{x^2-x+6} dx$
- **98.** Evaluate $\int \frac{5x+8}{(x+3)(2x-1)} dx$

- **99.** Evaluate $\int \frac{(a-b)x}{(x-a)(x-b)} dx$
- **100.** Evaluate $\int \frac{2x}{x^2 a^2} dx$
- 101. Define Definite Integral.
- **102.** Give two properties of definite integral.
- **103.** State Fundamental Theorem of Calculus.
- **104.** Prove that $\int_a^b f(x)dx = -\int_b^a f(x)dx$
- **105.** Evaluate $\int_{-1}^{3} (x^3 + 3x^2) dx$
- **106.** Evaluate $\int_{1}^{2} \frac{x^{2}+1}{x+1} dx$
- 107. Evaluate $\int_0^{\frac{\pi}{4}} \sec x (\sec x + \tan x) dx$
- 108. Evaluate $\int_0^{\frac{\pi}{6}} x \cos x \ dx$
- **109.** Evaluate $\int_1^e x \ln x \, dx$
- 110. If $\int_{-2}^{1} f(x)dx = 5$, $\int_{-2}^{1} g(x)dx = 4$ then evaluate the integral

(i)
$$\int_{-2}^{1} [2f(x) + 3g(x)] dx$$
 (ii) $\int_{-2}^{1} 3f(x) dx - 2 \int_{-2}^{1} g(x) dx$

- 111. Evaluate $\int_{1}^{2} (x^2 + 1) dx$
- 112. Evaluate $\int_{-1}^{1} \left(x^{\frac{1}{3}} + 1 \right) dx$
- 113. Evaluate $\int_{-2}^{0} \frac{1}{(2x-1)^2} dx$
- 114. Evaluate $\int_{-6}^{2} \sqrt{3-x} \, dx$
- 115. Evaluate $\int_{1}^{\sqrt{5}} \sqrt{(2t-1)^3} \, dt$
- 116. Evaluate $\int_{2}^{\sqrt{5}} x \sqrt{x^2 1} \, dx$
- 117. Evaluate $\int_{1}^{2} \frac{x}{x^{2}+2} dx$
- 118. Evaluate $\int_2^3 \left(x \frac{1}{x}\right)^2 dx$
- 119. Evaluate $\int_0^3 \frac{dx}{x^2+9}$
- 120. Evaluate $\int_{\frac{\pi}{6}}^{\frac{3}{3}} \cos t \, dt$
- 121. Evaluate $\int_{1}^{2} \ln x \, dx$
- **122.** Evaluate $\int_0^{-2} \left(e^{\frac{x}{2}} e^{-\frac{x}{2}} \right) dx$
- **123.** Evaluate $\int_0^{\frac{\pi}{3}} \cos^2 \theta \sin \theta \, dx$
- **124.** Evaluate $\int_{-1}^{5} |x 3| dx$
- 125. Find the area bounded by the curve $y = 4 x^2$ and the x-axis.
- **126.** Find the area bounded by the curve $y = x^3 + 3x^2$ and the x-axis.
- 127. Find the area between the x-axis and the curve $y = x^2 + 1$ from x = 1 to x = 2.
- 128. Find the area, above the x-axis and under the curve $y = 5 x^2$ from x = -1 to x = 2.
- 129. Find the area below the curve $y = 3\sqrt{x}$ and above the x-axis between x = 1 and x = 4.
- 130. Find the area bounded by cos function from $x = -\frac{\pi}{2}$ to $x = \frac{\pi}{2}$

- 131. Find the area between the x-axis and the curve $y = 4x x^2$
- 132. Find the area above x-axis, bounded by the curve $y^2 = 3 x$ from x = -1 to x = 2.
- 133. Find the area between the x-axis and the curve $y = \cos \frac{1}{2}x$ from $x = -\pi$ to π .
- 134. Find the area between the x-axis and the curve $y = \sin 2x$ from x = 0 to $x = \frac{\pi}{3}$.
- 135. Define Differential Equation.
- **136.** Define Order of Differential Equation.
- 137. Solve the differential equation $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$
- 138. Check $y = \tan(e^x + c)$ is a solution of the differential equation $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$
- **139.** Solve the differential equation $\frac{dy}{dx} = -y$
- **140.** Solve the differential equation y dx + x dy = 0
- **141.** Solve the differential equation $\frac{dy}{dx} = \frac{1-x}{y}$
- **142.** Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$
- **143.** Solve the differential equation $\sin y \csc x \frac{dy}{dx} = 1$
- **144.** Solve the differential equation x dy + y(x 1) dx = 0
- 145. Solve the differential equation $\frac{x^2+1}{y+1} = \frac{x}{y} \cdot \frac{dy}{dx}$
- 146. Solve the differential equation $\frac{1}{x} \frac{dy}{dx} = \frac{1}{2} (1 + y^2)$
- 147. Solve the differential equation $1 + \cos x \tan y \frac{dy}{dx} = 0$
- **148.** Solve the differential equation $\sec x + \tan y \frac{dy}{dx} = 0$
- **149.** Solve the differential equation $(e^x + e^{-x}) \frac{dy}{dx} = e^x e^{-x}$
- 150. Find the general solution of the equation $\frac{dy}{dx} x = xy^2$

IMPORTANT LONG QUESTIONS

1. Evaluate
$$\int \frac{dx}{\sqrt{x+a}+\sqrt{x+b}}$$
, $\begin{pmatrix} x+a>0\\ x+b>0 \end{pmatrix}$

2. Evaluate
$$\int \sqrt{1 + \sin x} \, dx$$

3. Evaluate
$$\int \frac{1}{\sqrt{a^2 + x^2}} dx$$

4. Show that
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}) + c$$

5. Show that
$$\int \sqrt{a^2 - x^2} dx = \frac{a^2}{2} \sin^{-1} \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + c$$

6. Evaluate
$$\int \frac{dx}{\sqrt{7-6x-x^2}}$$

6. Evaluate
$$\int \frac{dx}{\sqrt{7-6x-x^2}}$$
7. Evaluate
$$\int \frac{x}{x^4+2x^2+5} dx$$

8. Evaluate
$$\int \frac{\sqrt{2}}{\sin x + \cos x} dx$$

9. Evaluate
$$\int \ln(x + \sqrt{x^2 + 1}) dx$$

10. Evaluate
$$\int \sqrt{a^2 + x^2} dx$$

11. Evaluate
$$\int \sin^4 x \, dx$$

12. Evaluate
$$\int \frac{e^x(1+\sin x)}{1+\cos x} dx$$

13. Evaluate the integral by parts:
$$\int x^3 \cos x \, dx$$

14. Evaluate the integral by parts:
$$\int x \sin^{-1} x \, dx$$

15. Evaluate the integral by parts:
$$\int e^x \sin x \cos x \, dx$$

16. Evaluate the integral by parts:
$$\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$$

17. Evaluate
$$\int x^3 \cos x \, dx$$

18. Evaluate
$$\int \tan^3 x \sec x \, dx$$

19. Evaluate
$$\int x^3 e^{5x} dx$$

20. Evaluate
$$\int e^{-x} \sin 2x \, dx$$

21. Evaluate
$$\int e^{2x} \cos 3x \, dx$$

22. Evaluate
$$\int \csc^3 x \, dx$$

23. Evaluate the indefinite integral
$$\int \sqrt{x^2 - a^2} dx$$

24. Evaluate the indefinite integral
$$\int \sqrt{4-5x^2} dx$$

25. Evaluate the indefinite integral
$$\int \sqrt{3-4x^2} dx$$

26. Evaluate the indefinite integral
$$\int \sqrt{x^2 + 4} dx$$

27. Evaluate
$$\int \frac{7x-1}{(x-1)^2(x+1)} dx$$

28. Evaluate
$$\int \frac{2x}{x^6-1} dx$$

29. Evaluate
$$\int \frac{x^2 + 3x - 34}{x^2 + 2x - 15} dx$$

29. Evaluate
$$\int \frac{x^2+3x-34}{x^2+2x-15} dx$$

30. Evaluate $\int \frac{2x^3-3x^2-x-7}{2x^2-3x-2} dx$
31. Evaluate $\int \frac{4+7x}{(1+x)^2(2+3x)} dx$

31. Evaluate
$$\int \frac{2x^{2}-3x^{2}}{(1+x)^{2}(2+3x)} dx$$

32. Evaluate
$$\int \frac{2x^2}{(x-1)^2(x+1)} dx$$

33. Evaluate
$$\int \frac{x-2}{(x+1)(x^2+1)} dx$$

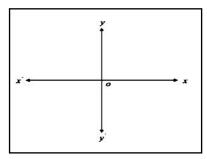
- **34.** Evaluate $\int \frac{1+4x}{(x-3)(x^2+4)} dx$
- **35.** Evaluate $\int \frac{12}{x^3+8} dx$
- **36.** Evaluate $\int_0^{\sqrt{3}} \frac{x^3 + 9x + 1}{x^2 + 9} dx$
- **37.** Evaluate $\int_{-1}^{2} (x + |x|) dx$
- **38.** Evaluate $\int_0^{\sqrt{7}} \frac{3x}{\sqrt{x^2+9}} dx$
- **39.** Evaluate $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx$
- **40.** Evaluate $\int_{\underline{\pi}}^{\underline{\pi}} \cos^2 \theta \cot^2 \theta \, dt$
- **41.** Evaluate $\int_0^{\frac{\pi}{4}} \cos^4 t \, dt$
- **42.** Evaluate $\int_0^{\frac{\pi}{4}} (1 + \cos^2 \theta) \tan^2 \theta \ d\theta$
- **43.** Evaluate $\int_0^{\frac{\pi}{4}} \frac{\sec \theta}{\sin \theta + \cos \theta} d\theta$
- **44.** Evaluate $\int_{\frac{1}{2}}^{1} \frac{\left(x^{1/3}+2\right)^2}{x^{2/3}} dx$
- **45.** Evaluate $\int_0^{\frac{\pi}{4}} \frac{\sin x 1}{\cos^2 x} dx$
- **46.** Evaluate $\int_0^{\frac{n}{4}} \frac{1}{1+\sin x} dx$
- 47. Find the area bounded by the curve $f(x) = x^3 2x^2 + 1$ and the x-axis is in the 1st quadrant.
- **48.** Determine the area bounded by the parabola $y = x^2 + 2x 3$ and the x-axis.
- **49.** Find the area bounded by the curve $y = x^3 4x$ and the x-axis.
- **50.** Find the area between the x-axis and the curve $y = \sqrt{2ax x^2}$ when a > 0.
- **51.** Solve the differential equation $\frac{1}{x} \frac{dy}{dx} 2y = 0$

- 52. Solve $2e^x \tan y + (1 e^x) \sec^2 y \, dy = 0$ 53. Solve the differential equation $\frac{dy}{dx} + \frac{2xy}{2y+1} = x$ 54. Solve the differential equation $(x^2 yx^2) \frac{dy}{dx} + y^2 + xy^2 = 0$
- **55.** Solve the differential equation $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$
- **56.** Solve the differential equation $\left(y x \frac{dy}{dx}\right) = 2\left(y^2 + \frac{dy}{dx}\right)$
- 57. Solve the differential equation $y x \frac{dy}{dx} = 3\left(1 + x \frac{dy}{dx}\right)$

UNIT

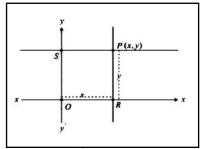
4

Introduction


Shanbaz

Analytic Geometry

DEFINITIONS + SUMMARY

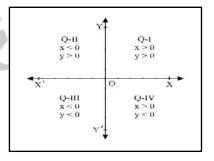

COORDINATE SYSTEM

Draw in a plane two mutually perpendicular number lines x'x and y'y, one horizontal and the other vertical. Let their point of intersection be 0, to which we call the **origin** and the real number 0 of both the lines is represented by 0. The two lines are called the **coordinate axes**. The horizontal line x'0x is called the x-axis and the vertical line y'0y is called the y-axis.

Suppose P is any point in the plane. Then P can be **located** by using an ordered pair of real numbers. Through P draw lines parallel to the coordinates axes meeting x - axis at R and y - axis at S. Let the directed distance $\overline{OR} = x$ and the directed distance $\overline{OS} = y$.

The ordered pair (x, y) gives us enough information to locate the point P. Thus, with every point P in the plane, we can associate an ordered pair of real numbers (x, y) and we say that P has **coordinates** (x, y). It may be noted that x and y are the directed distances of P from the y - axis and the x - axis respectively. The reverse of this technique also provides method for associating exactly one point in the plane with any ordered pair (x, y) of real numbers. This method of pairing of

in a one-to-one fashion the points in a plane with ordered pairs of real numbers is called the **two-dimensional rectangular** (or **Cartesian**) **coordinate system**.


Note

If (x, y) are the coordinates of a point P, then the first member (component) of the ordered pair is called the x - coordinate or abscissa of P and the second member of the ordered pair is called the y - coordinate or ordinate of P. Note that abscissa is always first element and the ordinate is second element in an ordered pair.

QUADRANTS

The coordinate axes divide the plane into four equal parts called **quadrants**. They are defined as follows:

Quadrant I: All points (x, y) with x > 0, y > 0**Quadrant II:** All points (x, y) with x < 0, y > 0**Quadrant III:** All points (x, y) with x < 0, y < 0**Quadrant IV:** All points (x, y) with x > 0, y < 0

DISTANCE FORMULA

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be the points in the plane, then distance **d** is given by

$$d = |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

THE RATIO FORMULA (POINT DIVIDING THE LINE-SEGMENT IN A GIVEN RATIO)

Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be the two given points in a plane. The coordinates of the point dividing the line segment AB in the ratio k_1 : k_2 are $\left(\frac{k_1x_2+k_2x_1}{k_1+k_2}, \frac{k_1y_2+k_2y_1}{k_1+k_2}\right)$. Where k_1 , k_2 are positive integer.

Let P(x, y) be the points that divides AB in the ratio k_1 : k_2

(i) If the directed distances AP and PB have the same sign, then their ratio is positive and P is said to divide AB internally.

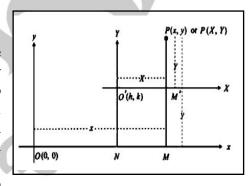
$$\left(\frac{k_1x_2 + k_2x_1}{k_1 + k_2}, \frac{k_1y_2 + k_2y_1}{k_1 + k_2}\right)$$

 $\left(\frac{k_1x_2+k_2x_1}{k_1+k_2},\frac{k_1y_2+k_2y_1}{k_1+k_2}\right)$ (ii) If the directed distances AP and PB have opposite signs i.e. P is beyond AB, then their ratio is negative and P is said to divide AB externally.

$$\left(\frac{k_1x_2 - k_2x_1}{k_1 - k_2}, \frac{k_1y_2 - k_2y_1}{k_1 - k_2}\right)$$

MID-POINT FORMULA

Let P(x, y) be the points that divides AB in the ratio $k_1: k_2$. If $k_1: k_2 = 1: 1$, then P becomes the mid-point of \overline{AB} and coordinates of P are given as


$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

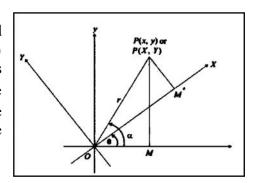
Note

- If k_1 : $k_2 = 1:1$, then the Ratio Formula becomes the Mid-Point Formula.
- The centroid of a triangle \triangle ABC is a point that divides each median in the ratio 2:1
- Median of a triangle are concurrent.
- Bisectors of angles of a triangle are concurrent.

TRANSLATION OF AXES

Let xy – coordinate system be given and O'(h, k) be any point in the plane. Through O' draw two mutually perpendicular lines O'X, O'Y such that O'X is parallel to Ox. The new axes O'X and O'Y are called **translation** of the Ox- and Oy-axes through the point O'. In translation of axes, origin is shifted to another point in the plane but the axes remain parallel to the old axes. If P be a point with coordinates (x, y) referred to

xy -coordinate system and the axes be translated through the point O'(h, k) and O'X, O'Y be the new axes. If P has coordinates (X,Y) referred to the new axes, then

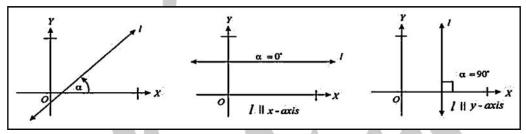

$$X = x - h$$
, $Y = y - k$ or $P(X,Y) = (x - h, y - k)$

If P has coordinates (x, y) referred to the old axes, then

$$x = X + h$$
, $y = Y + k$ or $P(x, y) = (X + h, Y + k)$

ROTATION OF AXES

Let xy —coordinate system be given. We rotate Ox and Oy about the origin through an angle $\theta(0 < \theta < 90^{\circ})$ so that the new axes are OX and OY. This process is called rotation of the axes. Let a point P have coordinates (x, y) referred to the xy-system and axes be rotated about origin through an angle θ and O'X, O'Y be the new axes.



If P has coordinates (X, Y) referred to the new axes, then

$$X = x \cos \theta + y \sin \theta, Y = y \cos \theta - x \sin \theta$$

Or $P(X,Y) = (x \cos \theta + y \sin \theta, y \cos \theta - x \sin \theta)$

INCLINATION OF A LINE

The angle α measured anti-clock wise from positive x-axis to a non-horizontal straight line l is called *inclination of the line*.

Note

- If α is the inclination of the line then $0^{\circ} < \alpha < 180^{\circ}$
- If a line l is parallel to x-axis, then $\alpha = 0^{\circ}$
- If a line l is parallel to y-axis, then $\alpha = 90^{\circ}$

SLOPE OR GRADIENT OF THE LINE

If α is the inclination of the line, $\tan \alpha$ is called its **slope** or **gradient** of a line. It is generally denoted by m.

Thus

 $m = \tan \alpha$

Note

- If a line l is horizontal (parallel to x-axis), then its slope m = 0
- If a line l is vertical (parallel to y-axis), then its slope $m = undefined = \infty = \frac{1}{0}$
- If α is the inclination of the line l and $0^{\circ} < \alpha < 90^{\circ}$, then slope "m" is positive.
- If α is the inclination of the line l and $90^{\circ} < \alpha < 180^{\circ}$, then slope "m" is negative.

SLOPE OF A STRAIGHT LINE JOINING TWO POINTS

If a non-vertical line l with inclination α passes through two points $A(x_1, y_1)$ and $B(x_2, y_2)$, then its slope "m" is

$$m = \tan \alpha = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}$$

Note

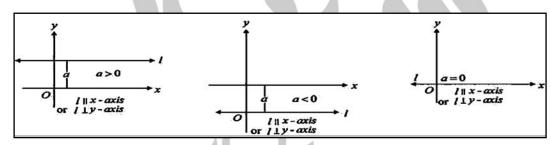
If l_1 and l_2 be two lines with slope m_1 and m_2 respectively. Then

(i) Parallel iff

$$m_1 = m_2 \quad \Leftrightarrow \quad l_1 \parallel l_2$$

(ii) Perpendicular iff
$$m_1. m_2 = -1$$
 or $m_1 = -\frac{1}{m_2} \Leftrightarrow l_1 \perp l_2$

COLLINEAR


Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ be three points.

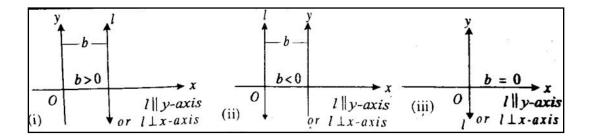
If Slope of AB = Slope of BC then A, B, C are Collinear Points.

EQUATION OF THE LINE PARALLEL TO X-AXIS

If l is parallel to x-axis remain at a constant distance (say a) from x-axis. Let P(x, y) be any point on the line l. So, all the points on this line satisfy the equation.

$$y = a$$

Note

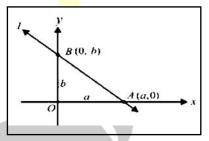

- If a > 0, then the line l is above x-axis
- If a < 0, then the line l is below x-axis
- If $\alpha = 0$, then the line *l* becomes the *x*-axis

Equation of x-axis is y = 0

EQUATION OF THE LINE PARALLEL TO Y-AXIS

If l is parallel to y-axis remain at a constant distance (say b) from y-axis. Let P(x, y) be any point on the line l. So, all the points on this line satisfy the equation.

$$x = b$$


Note

- If b > 0, then the line l is above y-axis
- If b < 0, then the line l is below y-axis
- If b = 0, then the line l becomes the y-axis

Equation of y-axis is x = 0

INTERCEPTS

- If a line intersects x-axis at (a, 0), then a is called x-intercept of the line.
- If a line intersects y-axis at (0, b), then b is called y-intercept of the line.

SLOPE-INTERCEPT FORM OF EQUATION OF A STRAIGHT LINE

Equation of a non-vertical straight line l with slope "m" and y-intercept "c" is

$$v = mx + c$$

POINT-SLOPE FORM OF EQUATION OF A STRAIGHT LINE

Equation of a non-vertical straight line l with slope "m" passes through the point $P(x_1, y_1)$ is

$$y - y_1 = m(x - x_1)$$

The equation of the line through the origin O(0,0) having slope "m" is

$$y = mx$$

TWO-POINT FORM OF EQUATION OF A STRAIGHT LINE

Equation of a non-vertical straight line l with slope "m" passes through the point $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) \Rightarrow \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

OR
$$y - y_2 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_2) \Rightarrow \frac{y - y_2}{y_2 - y_1} = \frac{x - x_2}{x_2 - x_1}$$

$$\begin{array}{c|ccc}
\mathbf{OR} \begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

SYMMETRIC FORM OF EQUATION OF A STRAIGHT LINE

Equation of a non-vertical straight line l passes through the point $P(x_1, y_1)$ with inclination α is

$$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha} = r \ (say)$$

This is called *symmetric* form of equation of the line.

TWO-INTERCEPT FORM OF EQUATION OF A STRAIGHT LINE

Equation of a non-vertical straight line l whose non-zero x-intercept and y-intercepts are "a" and "b" respectively is

$$\frac{x}{a} + \frac{y}{b} = 1$$

NORMAL FORM OF EQUATION OF A STRAIGHT LINE

Equation of a non-vertical straight line l, such that length of the perpendicular from the origin to l is "p" and " α " is the inclination of this perpendicular is

$$x\cos\alpha + y\sin\alpha = p$$

Note

The linear equation ax + by + c = 0 in two variables x and y represents a straight line.

A linear equation in two variables x and y is

$$ax + by + c = 0$$

Where a, b and c are constants and a and b are not simultaneously zero.

POSITION OF A POINT WITH RESPECT TO A LINE

Let $P(x_1, y_1)$ be appoint in the plane not lying on the line l: ax + by + c = 0 ---- (1)

- (a) Above the line (1) if
- $ax_1 + by_1 + c > 0$
- (b) Below the line (1) if
- $ax_1 + by_1 + c < 0$

CONDITION OF CONCURRENCY OF THREE STRAIGHT LINES

Three non-parallel lines

$$l_1: a_1x + b_1y + c_1 = 0$$
, $l_2: a_2x + b_2y + c_2 = 0$, $l_3: a_3x + b_3y + c_3 = 0$

Are concurrent iff
$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & a_3 & c_3 \end{vmatrix} = 0$$

Note

- Two non-parallel lines intersect each other at one and only one point.
- An infinite number of lines can pass through a point.
- Altitudes of a triangle are concurrent.
- Right bisectors of a triangle are concurrent.

DISTANCE OF A POINT FROM A LINE

The distance "d" from the points $P(x_1, y_1)$ to the line l: ax + by + c = 0 is given by

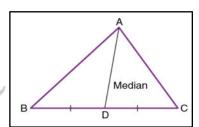
$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

If the point $P(x_1, y_1)$ lies on the line l: ax + by + c = 0, then distance "d" is zero.

DISTANCE BETWEEN TWO PARALLEL LINES

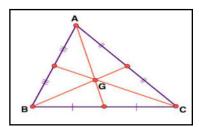
The distance between two parallel lines is the distance from any point on one of the lines to the other line.

AREA OF TRIANGLE


Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ be three points. Then area of a triangle $\triangle ABC$ is given

by
$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

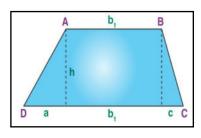
If the points $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are collinear, then $\Delta = 0$.


MEDIAN OF A TRIANGLE

The median of a triangle is a line segment from the vertex to the midpoint of the opposite side. Because a triangle has three vertexes, it has also three medians.

CENTROID OF A TRIANGLE

The point at which three medians of a triangle intersects is called *centroid* of a triangle. In figure the point G is Centroid.



TRAPEZIUM

A quadrilateral having two parallel and two non-parallel sides is called *trapezium*.

Area of trapezoidal region= $\frac{1}{2}$ (sum of || sides)(distance between || sides)

From figure Area of Trapezium = $\frac{1}{2}(AB + DC)(h)$

ANGLE BETWEEN TWO LINES

Let l_1 and l_2 be two non-vertical lines such that they are not perpendicular to each axes. If m_1 and m_2 are the lopes of l_1 and l_2 respectively, then the angle θ from l_1 to l_2 is given by: $\tan \theta = \frac{m_2 - m_1}{1 + m_1 m_2}$

$$\tan\theta = \frac{m_2 - m_1}{1 + m_1 m_2}$$

Corollary 1.
$$l_1 \parallel l_2 \text{ if and only if } m_1 = m_2$$

$$\Rightarrow \theta = 0^{\circ}$$
 Corollary 2.
$$l_1 \perp l_2 \text{ if and only if } 1 + m_1 m_2 = 0$$

$$\Rightarrow \theta = \infty$$

HOMOGENEOUS EQUATION

Let f(x, y) = 0 be any equation in the variables x any y, equation f(x, y) = 0 is called a homogeneous equation of degree n (a positive integer) if

$$f(kx, ky) = k^n f(x, y)$$
 for some real number k .

Every homogeneous second-degree equation $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines through the origin. The lines are

- $h^2 > ab$ (i) Real and distinct, if
- $h^2 = ab$ Real and Coincident, if (ii)
- $h^2 < ab$ Imaginary, if (iii)

MEASURE OF ANGLE BETWEEN THE LINES REPRESENTED BY

$$ax^2 + 2hxy + by^2 = 0$$

$$\tan \theta = \frac{2\sqrt{h^2 - ab}}{a + b}$$

- Two lines are parallel, if $\theta = 0^{\circ}$, so that $\tan \theta = 0$ which implies $h^2 ab = 0$ which is condition for the lines to be coincident.
- Two lines are orthogonal (\perp), if $\theta = 90^{\circ}$, so that $\tan \theta = \infty$ (undefined), which implies a + b = 0. Hence the condition for $ax^2 + 2hxy + by^2 = 0$ to represent a pair of orthogonal (perpendicular) lines is that sum of the coefficients of x^2 and y^2 is 0.

MCQ's

Choose the correct Option.

1	If (x, y) are the coo	ordi	nates of a point P , the	nen	the first member of	the	order pair is				
	called										
a	x-coordinate	b	Abscissa	c	Ordinate	d	Both a and b				
2	If (x, y) are the coo	ordi	nates of a point P , the	nen	the second member	of	the order pair is				
	called										
a	x-coordinate	b	Abscissa	c	Ordinate	d	Both a and b				
3	If $x > 0$, $y > 0$ the	n P	(x, y) lie in c	luac	lrant.						
a	I	b	П	c	III	d	IV				
4	If $x < 0$, $y > 0$ the	n P	(x, y) lie in c	luac	lrant.						
a	I	b	П	c	III	d	IV				
5	If $x < 0$, $y < 0$ the	n P	(x, y) lie in c	luac	lrant.						
a	I	b	П	c	III	d	IV				
6	If $x > 0$, $y < 0$ the	n P	(x, y) lie in	luac	Irant.	1					
a	I	b	II	c	III	d	IV				
7		W	points $A(x_1, y_1)$ and								
a	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$	b	$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$	С	$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$	d	Both a and b				
8	If point $C(-5,3)$ i	s th	e centre of the circle	e an	d $P(7,-2)$ lies on	the	circle then radius				
	of the circle is				^						
a	12	b	13	c	15	d	0				
9	Mid-point of the lin		egment $A(x_1, y_1)$ are								
a	$\left(\frac{x_1-x_2}{2}, \frac{y_1-y_2}{2}\right)$	b	$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$	С	$\left(\frac{x_1+y_1}{2}, \frac{x_2+y_2}{2}\right)$	d	None				
10	If $x > 0$ then $P(x, y)$	y) 1	ie in								
a	Left half plane	b	Right half plane	С	x-axis	d	y-axis				
11	If $y > 0$ then $P(x, y)$	') li	e in								
a	Left half plane	b	Right half plane	c	x-axis	d	y-axis				
12	Distance between t	he p	points (0,0) and (3,	4)	is						
a	6	b	5	c	7	d	8				
13	Distance between the points (1,2) and (2,2) is										
a	3	b	5	c	1	d	8				

14	Distance between the origin and (4,5) is										
a	$\sqrt{31}$	b	$\sqrt{41}$	c	$\sqrt{51}$	d	$\sqrt{64}$				
15	Coordinate of the r	nid-	point of the joining	the	points (5,7) and (7	,5)	are				
a	(6,5)	b	(5,5)	c	(5,6)	d	(6,6)				
16	Given the points A	(7,5	s) and $B(-6,1)$. The	m	d-point of the segm	ent	AB is				
a	(1,6)	b	(13,4)	С	$\left(\frac{1}{2},3\right)$	d	(-13, -4)				
17	In translation of axis, origin is shifted to another point in the plane but axes remain										
a	same	b	Parallel to old axes	С	Perpendicular to old axes	d	None				
18	The angle α measure	red	anti-clock wise from	n po	ositive x-axis to a no	on-l	norizontal straight				
	line l is called										
a	Slope of line	b	Gradient of line	С	Inclination of line	d	None				
19	The inclination of	the	line is always measu	res	YY						
a	Clock-wise	b	Anti-clockwise	c	Both a & b	d	None				
20	If α is the inclinati	on o	of the line then	L							
a	0° < α < 90°	b	$0^{\circ} < \alpha < 180^{\circ}$	c	$0^{\circ} < \alpha < 270^{\circ}$	d	None				
21	If a line l is paralle	1 to	x-axis, then its incli	nat	ion $\alpha =?$						
a	1°	b	0°	c	90°	d	180°				
22	-		y-axis, then its incli	nat	ion $\alpha =?$						
a	1°	b	0°	c	90°	d	180°				
23	If α is the inclinati	on o	of the line then slope	of	line is						
a	$\cot \alpha$	b	$\sin \alpha$	С	cosα	d	$\tan \alpha$				
24	Slope of a line is re	epre	sented by								
a	S	b	m	С	α	d	None				
25	If a line l is horizon	ntal	(parallel to x -axis),	the	n its slope is						
a	1	b	0	С	90	d	∞				
26	If a line l is vertical	l (p	arallel to y-axis), the	en i	ts slope is						
a	1	b	0	С	90	d	∞				
27	If α is the inclinati	on o	of the line l and 0° <	α	$< 90^{\circ}$, then slope '	'm"	is				
a	positive	b	negative	С	Zero	d	None				

28	If α is the inclination	on (of the line l and 90°	< 0	$\alpha < 180^{\circ}$, then slop	e "	m" is
a	positive	b	negative	c	zero	d	None
29	If a non-vertical line $B(x_2, y_2)$, then its		with inclination α poe " m " is	asse	es through two poin	ts A	(x_1, y_1) and
a	$\frac{y_2 - y_1}{x_2 - x_1}$	b	$\frac{y_1 - y_2}{x_1 - x_2}$	С	$\frac{y_1 - y_2}{x_2 - x_1}$	d	Both a & b
30	If Slope of $AB = S$	Slop	oe of BC then A, B, C	are			
a	Linear	b	Collinear	c	Perpendicular	d	None
31	If l_1 and l_2 be two	line	es with slope m_1 and	m_2	respectively. Then	l_1	∥ l ₂ if
a	$m_1 m_2 = 0$	b	$m_1 m_2 = 1$	c	$m_1 m_2 = -1$	d	$m_1 = m_2$
32	If l_1 and l_2 be two	line	es with slope m_1 and	m_2	respectively. Then	l_1	$\perp l_2$ if
a	$m_1 m_2 = 0$	b	$m_1 m_2 = 1$	c	$m_1 m_2 = -1$	d	$m_1 = m_2$
33	If a point $P(x, y)$	lie	on line l is parallel	to a	c-axis remain at a	con	stant distance "a"
	from x -axis then its	s eq	uation is				
a	y = a	b	x = a	С	y = b	d	x = b
34	If a point $P(x, y)$	lie	on line l is parallel	to 3	-axis remain at a	con	stant distance "b"
	from y-axis then its	s ec	uation is		4 44		
a	y = a	b	x = a	c	y = b	d	x = b
35	Equation of x -axis	is					/
a	x = 0	b	y = 0	c	x = a	d	y = b
36	Equation of <i>y</i> -axis	is			, , , , , , , , , , , , , , , , , , ,		
a	x = 0	b	y = 0	c	x = a	d	y = b
37			(a, 0), then a is	s ca		e.	
a	x-intercept	b	y-intercept	c	Origin	d	None
38	If a line intersects 3		(0, b), then b			e.	
a	x-intercept	b			Origin	d	None
39		atic	on of the line in	_ fo	orm.	•	
a	Normal	b	Symmetric	c	Slope-point	d	Slope-intercept
40	-		the line passes through	ugh			
a	<i>x</i> -axis	b	y-axis	c	Origin	d	None
41	y-intercept of the la	ine					
a	5	b	2	c	0	d	- 5

42	$y - y_1 = m(x - x)$	x_1	is called equation o	f liı	ne in form.		
a	Normal	b	Symmetric	c	Point-slope	d	Slope-intercept
43	The point of concur	rrer	ncy of the medians o	f a	triangle is called		
a	In-centre	b	Centroid	c	Circumcircle	d	Orthocenter
44	Medians of a triang	gle a	are				
a	Collinear	b	Concurrent	С	Perpendicular	d	Parallel
45	Bisectors of angles	of	a triangle are				
a	Collinear	b	Concurrent	c	Perpendicular	d	Parallel
46	_		ertical straight line R Symmetric form	_	_	_	
a	$\frac{x + x_1}{\cos \alpha} = \frac{y + y_1}{\sin \alpha}$	b	$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha}$	С	y = mx + c	d	None
47	Equation of straigh	t lir	ne l if its x -intercept	is '	a"and y-intercepts	is "	b" is
a	$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha}$	b	y = mx + c	С	$\frac{x}{a} + \frac{y}{b} = 1$	d	None
48	Normal form of equ	<mark>u</mark> ati	on of straight line is		707		
a	$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha}$	b	$y - y_1 = m(x - x_1)$	c	$x\cos\alpha + y\sin\alpha = p$	d	None
49	The linear equation	ax	c + by + c = 0 in tw	70 V	variables x and y represents y	ores	sents
a	Circle	b	Parabola	c	Straight line	d	Ellipse
50	Slope of the line 52	х —	12y + 39 = 0 is eq	ual	to		
a	5	b	$-\frac{5}{12}$	c	5	d	$-\frac{5}{20}$
51	12 The point (2.4) 1			2	39		39
51			n the line $4x + 5y -$			1	N
a	Above	b	Below	c	On the lie	d	None
52			intersect each other	4		1	
a	One point	b	Two points	c	Three points	d	Four points
53	<u>-</u>	alle	l then their intersect	ing	-		
a	Exists	b	Not exist	c	Is origin	d	None
54	Altitudes of a triang	gle	are				
a	Collinear	b	Concurrent	c	Perpendicular	d	Parallel
55	Right bisectors of a	ı tri	angle are				
a	Collinear	b	Concurrent	c	Perpendicular	d	Parallel
56	The distance "d" fr	om	the points $P(x_1, y_1)$	to	the line $l: ax + by$	+ <i>c</i>	= 0 is

a	$\frac{ ax + by - c }{}$	b	$\frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}}$	c	$\frac{ ax_1 + by_1 + c }{\sqrt{2}}$	d	$\frac{ ax_1-by_1-c }{}$
57	If the point $P(x_1, y)$	₁) l	ies on the line $l: ax$	+ b	y + c = 0, then dis	tano	ce "d" is
a	$ ax_1 + by_1 + c $	b	$\frac{ ax_1 + by_1 + c }{\sqrt{a^2 - b^2}}$	c	Zero	d	1
	$\sqrt{a^2+b^2}$		$\sqrt{a^2-b^2}$				
58	If the points $A(x_1, y_1)$	$y_1)$	$B(x_2, y_2)$ and $C(x_3)$	y_3) are collinear, then	its	area is
a	1	b	0	c	2	d	3
59	If area of triangle A	ABC	c is zero then points	are			
a	Linear	b	Concurrent	c	Collinear	d	None
60	Equation of horizo	ntal	line through $(7, -9)$)			
a	x = 7	b	y = -9	c	y = 7	d	x = -9
61	Equation of vertica	ıl lir	through $(-5,3)$		L		L
a	x = -5	b	y = 3	c	y = -5	d	x = 3
62	Equation of line bi	sect	ing the first and thir	d q	uadrant is		L
a	x = y	b	x = -y	c	x - y = 1	d	None
63	The point of the in	ters	ection of the altitude	es o	f a triangle is called	4	
a	Centroid	b	In-centre	c	Ortho-centre	d	Circum-centre
a 64	1		In-centre quation $ax^2 + 2hxy$				
	1	ıs e	quation $ax^2 + 2hxy$				
	Every homogeneous through the origin	l is e (0,0	quation $ax^2 + 2hxy$	<u> </u> 7 +	$by^2 = 0 \text{ represents}$		
64	Every homogeneous through the origin $h^2 - ab > 0$	as e (0,0	quation $ax^2 + 2hxy$	r +	$by^2 = 0 \text{ represents}$ $h^2 - ab = 0$	two	o real lines passes None
64 a	Every homogeneous through the origin $h^2 - ab > 0$	(0,0 b	quation $ax^2 + 2hxy$ 0) if $h^2 - ab < 0$ quation $ax^2 + 2hxy$	r +	$by^2 = 0 \text{ represents}$ $h^2 - ab = 0$	two	o real lines passes None
64 a	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous	ts e (0,0) b us e orig	quation $ax^2 + 2hxy$ 0) if $h^2 - ab < 0$ quation $ax^2 + 2hxy$	c c +	$by^2 = 0 \text{ represents}$ $h^2 - ab = 0$	two	None o imaginary lines
64 a 65	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous passes through the $h^2 - ab > 0$	b original	quation $ax^2 + 2hxy$ Quation $ax^2 + 2hxy$ $ax^2 + 2hxy$ quation $ax^2 + 2hxy$ $ax^2 + 2hxy$ $ax^2 + 2hxy$	c c c	$by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$	two	None o imaginary lines None
64 a 65	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous passes through the $h^2 - ab > 0$ Every homogeneous through the $ab > 0$ Every homogeneous through the $ab > 0$	b bous	quation $ax^2 + 2hxy$ Quation $ax^2 + 2hxy$ $ax^2 + 2hxy$ quation $ax^2 + 2hxy$ $ax^2 + 2hxy$ $ax^2 + 2hxy$ $ax^2 + 2hxy$ $ax^2 + 2hxy$	c c c hxy	$by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $y + by^{2} = 0 \text{ represents}$	two	None o imaginary lines None
64 a 65	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous passes through the $h^2 - ab > 0$ Every homogeneous through the $ab > 0$ Every homogeneous through the $ab > 0$	b us e orig b b ssess	quation $ax^2 + 2hxy$ quation $ax^2 + 2hxy$ 0) if	c c v + c hxy	$by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $y + by^{2} = 0 \text{ represents}$	two	None o imaginary lines None
64 a 65 a 66	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous passes through the $h^2 - ab > 0$ Every homogeneous coincident lines path $h^2 - ab > 0$	b bous essesses b	quation $ax^2 + 2hxy$ Quation $ax^2 + 2hxy$ Quation $ax^2 + 2hxy$ gin (0,0) if $ax^2 + 2hxy$ equation $ax^2 + 2hxy$ equation $ax^2 + 2hxy$ sthrough the origin of	c c hxy + c c c c c c	$by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $y + by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $h^{2} - ab = 0$	two d	None o imaginary lines None s two real and
64 a 65 a 66	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous passes through the $h^2 - ab > 0$ Every homogeneous coincident lines pactoric dent lines pactor	b bous essesses b	quation $ax^2 + 2hxy$ quation $ax^2 + 2hxy$ 0) if	c c hxy + c c c c c c	$by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $y + by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ 0 is 3	two d	None o imaginary lines None s two real and
64 a 65 a 66 a 67	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous passes through the $h^2 - ab > 0$ Every homogeneous coincident lines pactoric dent lines pactoric dentiles pa	b bous ssess b b	quation $ax^2 + 2hxy$	$\begin{vmatrix} c \\ c \\ hxy \end{vmatrix}$ $\begin{vmatrix} c \\ c \\ hxy \end{vmatrix}$	$by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $y + by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ 0 is	two d d d sent	None o imaginary lines None s two real and
64 a 65 a 66 a 67	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous passes through the $h^2 - ab > 0$ Every homogeneous coincident lines pactoric dent lines pactor	b bous ssess b b	quation $ax^2 + 2hxy$	$\begin{vmatrix} c \\ c \\ hxy \end{vmatrix}$ $\begin{vmatrix} c \\ c \\ hxy \end{vmatrix}$	$by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $y + by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ 0 is 3	two d d d sent	None o imaginary lines None s two real and
a 65 a 66 a 67 a	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous passes through the $h^2 - ab > 0$ Every homogeneous coincident lines pactoric dent lines pactoric dent lines pactoric dentile perpendicular and $h^2 - ab > 0$ Slope of line perpendicular dentile dent	b bous ssess b b	quation $ax^2 + 2hxy$	$\begin{vmatrix} c \\ c \\ hxy \end{vmatrix}$ $\begin{vmatrix} c \\ c \\ hxy \end{vmatrix}$	$by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $y + by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ 0 is $\frac{3}{2}$	two d d d sent	None None None None Two real and None $\frac{3}{2}$
64a65a66a67a68	Every homogeneous through the origin $h^2 - ab > 0$ Every homogeneous passes through the $h^2 - ab > 0$ Every homogeneous coincident lines part $h^2 - ab > 0$ Slope of line perperture $\frac{2}{3}$ Slope of the line $\frac{2}{3}$	b	quation $ax^2 + 2hxy$	$\begin{vmatrix} c \\ c \\ d \end{vmatrix}$ $\begin{vmatrix} c \\ d \\ d \end{vmatrix}$ $\begin{vmatrix} c \\ d \\ d \end{vmatrix}$ $\begin{vmatrix} c \\ c \\ d \end{vmatrix}$ $\begin{vmatrix} c \\ c \\ c \\ c \\ d \end{vmatrix}$	$by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ $y + by^{2} = 0 \text{ represents}$ $h^{2} - ab = 0$ 0 is $\frac{3}{2}$	two d d d d d	None None None None Two real and None $-\frac{3}{2}$

a	$\tan^{-1}\left(\frac{2\sqrt{h^2 - ab}}{a + b}\right)$	b	$\tan^{-1}\left(\frac{2\sqrt{h^2+ab}}{a+b}\right)$	c	$\tan^{-1}\left(\frac{2\sqrt{h^2 - ab}}{a - b}\right)$	d	$\tan^{-1}\left(\frac{\sqrt{h^2 - ab}}{a + b}\right)$				
70	Slope of the line pa	isse	s through (2,6) and	(8,	-6) is						
a	5	b	2	c	4	d	3				
71	Slope of line with inclination 60° is										
a	0	b	1	c	$^{1}/_{\sqrt{3}}$	d	$\sqrt{3}$				
72	P is mid-point of A	B t	hen P divides AB in	rat	io						
a	1:1	b	2: 2	c	1:2	d	Both a & b				
73	Every homogeneou	is e	quation $ax^2 + 2hxy$, +	$by^2 = 0$ represents	two	straight lines				
a	Through the	b	Not through the	c	Parallel to each	d	Perpendicular				
	origin		origin		other		to each other				
74	Slope of line with	ncl	ination 30° is		_		,				
a	0	b	1	c	$^{1}/_{\sqrt{3}}$	d	$\sqrt{3}$				
75	The point of concu	rrer	ncy of median of a tr	ian	gle is called						
a	Centroid	b	In-centre	c	Ortho-centre	d	Circum-centre				
76	Equation of straigh	t lir	ne passes through the	e po	pint $(-8,5)$ having	slo	pe undefined is				
a	x - 8 = 0	b	x + 8 = 0	c	y + 5 = 0	d	None				
77	Equation of the lin	e ha	ving x-intercept: -3	3 an	d y-intercept: 4 is						
a	x - y + 2 = 0	b	4x - y + 36 = 0	c	2x - 4y = 0	d	x - y = 0				
78	The length of the p	erp	endicular from (0,0)) to	15y - 8x + 3 = 0		,				
a	$\frac{3}{17}$	ь	$\frac{17}{3}$	c	3	d	0				
79	The point of interse	ecti	on of the line $5x + 7$	7 <i>y</i> =	= 35 and 3x - 7y =	= 2	1 is				
a	(0,7)	b	(7,0)	c	(2,3)	d	(1,2)				
80	Two lines $5x + 7y$	=	35 and 3x - 7y = 2	21 a	re						
a	Parallel	b	Perpendicular	c	Neither parallel nor perpendicular	d	None				
81	The perpendicular	dist	ance from the point	P(-	-4,7) to the line $6x$	_ 4	4y + 9 = 0 is				
a	$^{49}/_{\sqrt{52}}$	b	$\sqrt{52}$	c	$^{1}/_{\sqrt{52}}$	d	0				
82	If two lines l_1 and	l_2 h	aving slopes $-7/3$ a	and	$\frac{5}{2}$ respectively. T	hen	the angle l_1 to l_2				
	is		3								

a	-1	b	1	c	3	d	0
83	If a line passes thro	ougl	the points (4,6) an	d (4	1,8) then its inclinat	tion	is
a	60°	b	30°	c	45°	d	90°
84	$P\left(\frac{3}{7}, -\frac{5}{7}\right)$ lie in		quadrant.				
a	I	b	II	С	III	d	IV
85	The distance of poi	int ((-2,3) from y-axis i	s:			
a	2	b	-2	С	-3	d	3
86	The points $A(-5, -$	-2)	B(5, -4) are ends	of a	diameter of a circle	e. T	he centre will be:
a	(0,3)				(5,2)		(-5,4)
87	If distance between	ı tw	o points (3, 1) and ((k, 2)	2) is "1", then value	of	k =
a	-3	b	3	c	1	d	2
88	The centroid of a tr	rian	gle divides each med	diar	in the ratio:		
a	2:1	b	1: 2	c	3:1	d	1:3
89	The distance between	een 1	the points (1, 2) and	(2,	1) is:		
a	$\sqrt{3}$	b	√5	c	$\sqrt{2}$	d	$\sqrt{7}$
90	The distance between	een 1	the points $(0,0)$ and	(1,	2) is:		
a	0	b	2	c	$\sqrt{3}$	d	$\sqrt{5}$
91	The perpendicular	dist	ance of the line $3x$ -	+ 43	y + 10 = 0 from (0)	, 0)	
a	0	b	1	c	2	d	10
92	The slope of the lin	ne th	nrough the points (-	2,4	and (5, 11) is:		
a	-1	b	0	c	1	d	2
93	y-intercept of line	2 <i>x</i>	-y - 4 = 0 is:	П	107		
a	2	b	-2	c	4	d	-4
94	Equation of the line	e pa	ssing through (5, –	7)	having slope undefi	ned	is:
a	y = -7	b	x = 5	c	x = -5	d	y = 7
95	Equation of line bis	sect	ing II and IV quadra	ınt.			
a	y = x	b	y = -x	С	$y = \frac{1}{x}$	d	x + y = 1
96	The distance between	een 1	the points (3, 1) and	(-	2, -4) is:		
a	$3\sqrt{2}$	b	5√2	c	$4\sqrt{2}$	d	5
97	If (3, 5) is the mid-	-poi	nt of $(5, y)$ and (x, x)	7) tl	nen x =?, y =?		

a	x = 1, y = 1	b	x = -3, y = 1	c	x = 1, y = 3	d	x = -5, y = 2			
98	Equation of line wi	th s	slope -2 , y -intercept	t 3 i	s:					
a	x - 2y = 3	b	3x + 2y = 2	С	2x + y = 3	d	x + 3y = 2			
99	Slope of the line $5x + 7y = 35$ is:									
a	<u>5</u> 7	b	7 5	С	35	d	$-\frac{5}{7}$			
100	The distance of poi	nt ((3,7) from x -axis is:							
a	7	b	3	С	-3	d	- 7			
101	Distance between t	he j	points (2,3) and (3,2	2) is	S:					
a	$\sqrt{2}$	b	2	c	1	d	$2\sqrt{2}$			
102	Equation of line pa	ssir	ng through $(-2,5)$ h	avii	ng slope 0 is:					
a	c = 5	b	y = 5	С	x = -2	d	x = 2			
103	If $(4, -2), (-2, 4),$	(4,	10) are vertices of tr	ian	gle than its centr <mark>oi</mark> d	is:				
a	(-2,4)	b	(2,4)	С	(2,-4)	d	(-2, -4)			
104	Centroid of triangle	e wi	th vertices $A(2,1)$, B	3(-	1,3) and $C(-1, -4)$) is	:			
a	(3,1)	b	(0,0)	С	(2,2)	d	(-2,5)			
105	Equation of line ha	vin	g slope -5 , y -interco	ept	-7 is:					
a	5x + y + 7 = 0	b	5x - y + 7 = 0	С	5x + y - 7 = 0	d	7x + y + 5 = 0			

MCQ's Answers Key

1	2	3	4	5	6	7	8	9	10
d	c	a	b	c	d	d	b	b	ь
11	12	13	14	15	16	17	18	19	20
d	b	c	b	d	c	b	c	b	ь
21	22	23	24	25	26	27	28	29	30
b	c	d	ь	ь	d	a	d	d	b
31	32	33	34	35	36	37	38	39	40
d	c	a	d	b	a	a	b	d	c
41	42	43	44	45	46	47	48	49	50
a	c	b	b	b	b	c	c	c	a
51	52	53	54	55	56	57	58	59	60
a	a	b	b	b	b	c	b	c	b
61	62	63_	64	65	66	67	68	69	70
a	a	c	a	b	c	d	d	a	b
71	72	73	74	75	76	77	78	79	80
d	d	a	С	a	b	b	a	b	c
81	82	83	84	85	86	87	88	89	90
a	a	d	d	b	b	b	a	c	d
91	92	93	94	95	96	97	98	99	100
c	c	d	b	b	b	c	c	d	a
101	102	103	104	105					
a	b	b	b	a					
			S	ήα	hbo	iż			

IMPORTANT SHORT QUESTIONS

- 1. Show that the points A(-1,2), B(7,5) and C(2,-6) are vertices of a right triangle.
- 2. The point C(-5,3) is the centre of a circle and P(7,-2) lies on the circle. What is the radius of the circle?
- 3. Find the coordinates of the point that divides the join of A(-6,3) and B(5,-2) in the ratio 2: 3. (i) internally (ii) externally
- **4.** Find the distance and midpoint of A(3,1), B(-2,-4).
- **5.** Find the distance and midpoint of A(-8,3), B(2,-1).
- **6.** Find the distance and midpoint of $A\left(-\sqrt{5}, -\frac{1}{3}\right)$, $B\left(-3\sqrt{5}, 5\right)$.
- 7. Is $(\sqrt{176}, 7)$ is at a distance of 15 units from origin?
- 8. Show that the points A(0,2), $B(\sqrt{3},-1)$ and C(0,-2) are vertices of a right triangle.
- 9. Show that the points A(3,1), B(-2,-3) and C(2,2) are vertices of an isosceles triangle.
- **10.** Find h such that A(-1, h), B(3, 2) and C(7, 3) are collinear.
- 11. The points A(-5, -2) and B(5, -4) are ends of a diameter of a circle. Find the Centre and radius of the circle.
- 12. Find the points trisecting the join of A(-1, 4) and B(6, 2).
- 13. Find the point three-fifth of the way along the line segment from A(-5,8) to B(5,3).
- **14.** Find the point P on the join of A (1, 4) and B (5, 6) that is twice as far from A as B is from A and lies on the same side of A as B does.
- 15. The coordinates of a point P are (-6,9). The axes are translated through the point O'(-3,2). Find the coordinates of P referred to the new axes.
- 16. The two points P(-2,6), O'(-3,2) are given in xy-coordinate system. Find the XY-coordinates of P.
- 17. The two points P(-6, -8), O'(-4, -6) are given in xy-coordinate system. Find the XY-coordinates of P.
- **18.** The coordinates of two points P(-5, -3), O'(-2, -6) are given in the XY-coordinate system. Find the coordinates of P in xy —coordinate system.
- 19. Find the XY coordinates of the point P with given xy coordinates. P (5, 3), $\theta = 45^{\circ}$.
- **20.** Show that the points A(-3,6), B(3,2) and C(6,0) are collinear.
- **21.** Show that the triangle with vertices A(1,1), B(4,5) and C(12,-1) is a right triangle.
- 22. Find an equation of the straight line if its slope is 2 and y-intercept is 5.
- 23. Find an equation of the straight line if it is perpendicular to a line with slope -6 and its y-intercept is $\frac{4}{3}$.
- **24.** Find an equation of line through the points (-2, 1) and (6, -4).
- **25.** Write Intercept Form of Equation of a Straight Line.
- **26.** Write down an equation of the line which cuts the x-axis at (2,0) and y-axis at (0,-4).
- **27.** Find equation of line passing through (2,3), having slope -1.
- 28. The length of perpendicular from the origin to a line is 5 units and the inclination of this perpendicular is 120° . Find the slope and y-intercept of the line.
- **29.** Convert the equation 5x 12y + 39 = 0 into
 - (i) Slope intercept form (ii) Two-intercept form (iii) Normal form
- **30.** Check whether the following lines are concurrent or not.

$$3x - 4y - 3 = 0$$
, $5x + 12y + 1 = 0$, $32x + 4y - 17 = 0$

- 31. Find the distance between the parallel lines 2x 5y + 13 = 0 & 2x 5y + 6 = 0
- **32.** Find the area of the triangular region with vertices (a, b + c), (a, b c) and (-a, c).

- **33.** Find the area of the triangle with vertices A(1,4), B(2,-3) and C(3,-10).
- **34.** Define Trapezium.
- **35.** Define Centroid of a triangle.
- **36.** Define Medians of a triangle.
- 37. Find the slope and inclination of the line joining the points (-2, 4), (5, 11).
- **38.** Find the slope and inclination of the line joining the points (3, -2), (2, 7).
- **39.** Find the slope and inclination of the line joining the points (4, 6), (4, 8).
- **40.** By means of slopes, show that the points (-1, -3), (1, 5), (2, 9) lie on the same line.
- **41.** By means of slopes, show that the points (4, -5), (7, 5), (10, 15) lie on the same line.
- **42.** By means of slopes, show that the points (-4,6), (3,8), (10,10) lie on the same line.
- **43.** Find k so that the line joining A(7,3), B(k,-6) and the line joining C(-4,5), D(-6,4) are (i) parallel (ii) perpendicular.
- **44.** Find an equation of the horizontal line through (7, -9).
- **45.** Find an equation of the vertical line through (-5, 3).
- **46.** Find an equation of the line bisecting the first and third quadrants.
- **47.** Find an equation of the line bisecting the second and fourth quadrants.
- **48.** Find an equation of the line through A(-6,5) having slope 7.
- **49.** Find an equation of the line through (8, -3) having slope 0.
- **50.** Find an equation of the line through (-8,5) having slope undefined.
- **51.** Find an equation of the line through (-5, -3) and (9, -1).
- **52.** Find an equation of the line having y-intercept: -7 and slope: -5.
- **53.** Find an equation of the line having x-intercept: -3 and y-intercept: 4.
- **54.** Find an equation of the line having x-intercept: -9 and slope: -4.
- 55. Find an equation of the line through (-4, -6) and perpendicular to line having slope $\frac{-3}{3}$.
- **56.** Find an equation of the line through (11, -5) and parallel to a line with slope -24.
- 57. Convert 2x 4y + 11 = 0 into (i) Slope intercept form (ii) two intercept form
- 58. Convert 4x + 7y 2 = 0 into (i) Slope intercept form (ii) two intercept form
- **59.** Convert 15y 8x + 13 = 0 into (i) two intercept form (ii) normal form
- **60.** Show that the lines 2x + y 3 = 0, 4x + 2y + 5 = 0 are parallel.
- **61.** Check whether the two lines 12x + 35y 7 = 0, 105x 36y + 11 = 0 are parallel or perpendicular.
- **62.** Find the distance between two parallel lines 3x 4y + 3 = 0, 3x 4y + 7 = 0
- **63.** Find an equation of the line through (-4,7) and parallel to the line 2x 7y + 4 = 0.
- **64.** Check whether the point (5, 8) lies above or below the line 2x 3y + 6 = 0.
- **65.** Check whether the point (-7,6) lies above or below the line 4x + 3y 9 = 0.
- **66.** Find the distance from the point P(6, -1) to the line 6x 4y + 9 = 0.
- 67. Find the area of the triangular region whose vertices are A(5,3), B(-2,2), C(4,2).
- **68.** Find the area of the triangle with vertices A(2,3), B(-1,1) and C(4,-5).
- **69.** Find the angle from the line with slope $\frac{-7}{3}$ to the line with slope $\frac{5}{2}$.
- **70.** Check whether the lines are concurrent or not?

$$3x + 4y - 7 = 0$$
, $2x - 5y + 8 = 0$, $x + y - 3 = 0$

- 71. Find the point of intersection of the lines; x 2y + 1 = 0, 2x y + 2 = 0
- 72. Find the point of intersection of the lines; 3x + y + 12 = 0, x + 2y 1 = 0
- 73. Find the point of intersection of the lines; x + 4y 12 = 0, x 3y + 3 = 0
- 74. Determine the value of p such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and 3x + py + 8 = 0 meet at a point (concurrent).
- 75. Show that the lines 4x 3y 8 = 0, 3x 4y 6 = 0, x y 2 = 0 are concurrent.
- **76.** Define Homogeneous Equation.

- 77. Find an equation of each of the lines represented by $20x^2 + 17xy 24y^2 = 0$.
- 78. Find measure of the angle between the lines represented by $x^2 xy 6y^2 = 0$
- 79. Find equation of two lines represented by $10x^2 23xy 5y^2 = 0$.
- **80.** Find equation of two lines represented by $3x^2 + 7xy + 2y^2 = 0$.
- **81.** Find equation of two lines represented by $9x^2 + 24xy + 16y^2 = 0$.
- 82. Find equation of two lines represented by $2x^2 + 3xy 5y^2 = 0$.
- 83. Find equation of two lines represented by $6x^2 19xy + 15y^2 = 0$.
- **84.** Find measure of angle between the two lines represented by $10x^2 23xy 5y^2 = 0$.
- 85. Find measure of angle between the two lines represented by $2x^2 + 3xy 5y^2 = 0$.
- **86.** Find measure of angle between the two lines represented by $3x^2 + 7xy + 2y^2 = 0$.

IMPORTANT LONG QUESTIONS

- 1. Find h such that the points $A(\sqrt{3}, -1)$, B(0, 2) and C(h, -2) are vertices of a right triangle with right angle at the vertex A.
- 2. Find h such that the points A(h, 1), B(2, 7) and C(-6, -7) are vertices of a right triangle with right angle at the vertex A.
- 3. Find the point which is equidistant from the points A (5, 3), B (-2, 2) and C (4, 2). What is the radius of the circumcircle of the $\triangle ABC$?
- **4.** The points (4, -2), (-2, 4) and (5, 5) are the vertices of a triangle. Find in-Centre of the triangle.
- 5. Prove that the linear equation ax + by + c = 0 in two variables x and y represents a straight line.
- **6.** The three points A(7,-1), B(-2,2) and C(1,4) are consecutive vertices of a parallelogram. Find the fourth vertex.
- 7. Find an equation of the perpendicular bisector of the segment joining the points A(3,5) and B(9,8).
- 8. Find equations of the sides, altitudes and medians of the triangle whose vertices are A(-3,2), B(5,4) and C(3,-8).
- 9. The points A(-1,2), B(6,3) and C(2,-4) are vertices of a triangle. Show that the line joining the midpoint D of AB and the midpoint E of E0 of E1 of E2 and E3.
- 10. Find an equation of the line through (5, -8) and perpendicular to the join of A(-15, -8), B(10, 7).
- 11. Find equations of two parallel lines perpendicular to 2x y + 3 = 0 such that the product of the x- and y-intercepts of each is 3.
- 12. One vertex of a parallelogram is (1,4), the diagonals intersect at (2,1) and the sides have slopes 1 and $\frac{-1}{7}$. Find the other three vertices.
- 13. Find the angles of the triangle whose vertices are A(-5, 4), B(-2, -1), C(7, -5).
- 14. Find an equation of the line through the point (2, -9) and the intersection of the lines 2x + 5y 8 = 0 and 3x 4y 6 = 0
- 15. Find an equation of the line through the intersection of the lines x y 4 = 0 and 7x + y + 20 = 0 and parallel to the line 6x + y 14 = 0
- 16. Find an equation of the line through the intersection of the lines x + 2y + 3 = 0, 3x + 4y + 7 = 0 and making equal intercepts on the axes.
- 17. Find an equation of the line through the intersection of 16x 10y 33 = 0; 12x + 14y + 29 = 0 and the intersection of x y + 4 = 0; x 7y + 2 = 0
- **18.** Find the condition that the lines $y = m_1x + c_1$; $y = m_2x + c_2$; $y = m_3x + c_3$ are concurrent.
- 19. Show that the lines 4x 3y 8 = 0, 3x 4y 6 = 0, x y 2 = 0 are concurrent and the third line bisects the angle formed by the first two lines.
- **20.** The vertices of a triangle are A(-2,3), B(-4,1) and C(3,5). Find coordinates of the (i) centroid (ii) orthocenter (iii) circumcenter of the triangle Are these three points collinear?
- 21. Find the coordinates of the vertices of the triangle formed by the lines

$$x - 2y - 6 = 0$$
, $3x - y + 3 = 0$, $2x + y - 4 = 0$
Also find measures of the angles of the triangle.

22. Find the interior angles of the triangle whose vertices are A(-2, 11), B(-6, -3), C(4, -9).

- 23. Find the interior angles of the triangle whose vertices are A(6, 1), B(2, 7), C(-6, -7).
- **24.** Find the interior angles of the triangle whose vertices are A(2, -5), B(-4, -3), C(-1, 5).
- 25. Find the area of the region bounded by the triangle whose sides are

$$7x - y - 10 = 0,10x + y - 14 = 0,3x + 2y + 3 = 0.$$

- **26.** Find a joint equation of the straight lines through the origin and perpendicular to the lines represented by $x^2 + xy 6y^2 = 0$
- 27. Find equation of two lines represented by $x^2 + 2xy \sec \alpha + y^2 = 0$ and also find measure of angle between them.
- **28.** Find a joint equation of the straight lines through the origin and perpendicular to the lines represented by $x^2 2xytan\alpha y^2 = 0$
- 29. Find a joint equation of the straight lines through the origin and perpendicular to the lines represented by $ax^2 + 2hxy + by^2 = 0$
- **30.** Find the area of the region bounded by:

$$10x^2 - xy - 21y^2 = 0$$
 and $x + y + 1 = 0$

UNIT

5

Linear Inequalities

and

Linear Programming

DEFINITIONS + SUMMARY

INEQUALITY

Inequalities are expressed by the following four symbols;

- (i) > (greater than)
- (ii) < (less than)
- (iii) \geq (greater than or equal to)
- (iv) \leq (less than or equal to)

fxample:
$$-(i) ax < b(ii) 2x - y > 0(iii) 5x - y \ge 0(iv) x + 2y \le 3$$

The following operations will not affect the order (or sense) of inequality while changing it to simpler equivalent form:

- (i) Adding or subtracting a constant to each side of it.
- (ii) Multiplying or dividing each side of it by a positive constant.

Note

The order (or sense) of an inequality is changed by multiplying or dividing its each side by a negative constant.

LINEAR INEQUALITY

A Linear Inequality in two variables x any y can be one of the following forms:

$$ax + by < c$$
; $ax + by > c$; $ax + by \ge c$; $ax + by \le c$

Where a, b and c are constants and a, b are not both zero.

SOLUTION OF LINEAR INEQUALITY

A solution of a linear inequality in x and y is an ordered pair of numbers which satisfies the inequality.

Example: The ordered pair (1, 1) is a solution of the inequality x + 2y < 6

Because 1 + 2(1) = 3 < 6 which is true.

Note

- (i) There are infinitely many ordered pairs that satisfy the inequality
- (ii) Graph of linear inequality is the half plane.
- (iii) The linear equation ax + by = c is called "associated or corresponding equation" of linear inequalities ax + by < c; ax + by > c; $ax + by \ge c$; $ax + by \le c$

CORNER POINT OR VERTEX

A point of a solution region where two of its boundary lines intersect, is called a *corner point* or *vertex* of the solution region.

PROBLEM CONSTRAINT

Tackling a certain problem from everyday life each linear inequality concerning the problem is named as *problem constraint*.

PROBLEM CONSTRAINTS

The system of linear inequalities involved in the problem concerned are called *problem* constraints.

Non-negative Constraints

The variables used in the system of linear inequalities relating to the problems of everyday life are non-negative and are called *non-negative constraints*.

DECISION VARIABLES

The non-negative constraints which are used to taking a decision are called decision variables.

FEASIBLE REGION

A region which is restricted to the first quadrant is referred to as a *feasible region* for the set of given constraints.

FEASIBLE SOLUTION

Each point of the feasible region is called a *feasible solution* of the system of linear inequalities (or for the set of a given constraints).

FEASIBLE SOLUTION SET

A set consisting of all the feasible solutions of the system of linear inequalities are called a *feasible solution set*.

CONVEX REGION

If the line segment obtained by joining any two points of a region lies entirely within the region, then the region is called *Convex*.

OBJECTIVE FUNCTION

A function which is to be maximized or minimized is called an *objective function*.

OPTIMAL SOLUTION

The feasible solution which maximizes or minimizes the objective function is called the *optimal solution*.

THEOREM OF LINEAR PROGRAMMING

The theorem of linear programming states that the maximum and minimum values of the objective function occur at corner points of the feasible region.

PROCEDURE FOR DETERMINING OPTIMAL SOLUTION

- (i) Graph the solution set of linear inequality constraints to determine feasible region.
- (ii) Find the corner points of the feasible region.
- (iii) Evaluate the objective function at each corner point to find the optimal solution.

MCQ's

Choose the correct Option.

1	An expression inv	olvi	ng any one of the sy	ymb	$ools, <, >, \le and \ge$	is	called				
a	Equation	b	Inequality	c	Identity	d	Linear equation				
2	ax + b < c is line	ar i	nequality in	vai	riables.						
a	one	b	two	С	three	d	four				
3	The solution set of the inequality $ax + by < c$ is the										
a	Half plane	b	Whole plane	c	Quadrant of a	d	Circle				
					plane						
4	Solution of the ine	equa	lity is								
a	Finite	b	Infinite	c	Three	d	Four				
5	The graph of ineq	uali	$ ty \ ax + by < c \text{ is} $		4)					
a	Circle	b	Half plane	С	Straight line	d	Both b & c				
6	Graph of the inequ	<mark>ıal</mark> it	y x + 2y < 6 lies		· Y)	/	4				
a	Opposite to	b	Towards origin	С	In 1 st quadrant	d	In 2 nd quadrant				
	origin										
7	2x - 8 < 0 is	y			1	-					
a	Equation	b	Identity	С	Inequality	d	Curve				
8	The graph of $2x \ge$	<u> 3</u> 3	lies in								
a	Upper half plane	b	Lower half plane	c	Left half plane	d	Right half plane				
9	The graph of the e	qua	tion $2y = -3$ is								
a	Horizontal line	b	Vertical line	c	Inclined line	d	Line through				
							origin				
10	For the inequalities	s 22	$x + y \le 10$ and $x + y \le 10$	- 4 <i>y</i>	$r \le 12$, the corner p	oint	is				
a	(5,10)	b	(12,3)	c	(4,2)	d	(10,12)				
11	x = 5 is the soluti	on (of								
a	2x - 3 > 0	b	2x + 3 < 0	c	x + 4 < 0	d	x < 0				
12	x = 4 is the soluti	on (of								
a	-2x + 3 > 0	b	x + 3 > 0	С	x - 3 < 0	d	x + 3 < 0				
13	x = 2 is the soluti	on (of								
a	$2x - 1 \le 0$	b	$2x-1 \ge 0$	c	$x-1 \le 0$	d	$x + 1 \le 0$				

14	x = -1 is the solution of the inequality										
a	$2x + 3 \le 0$	b	2x + 3 > 0	c	x - 2 > 0	d	2x + 1 > 0				
15	x = 5 is not the so	oluti	on of								
a	x + 4 > 0	b	2x + 3 < 0	c	x - 4 > 0	d	x + 7 > 0				
16	x = 0 is not in the	e sol	ution of inequality								
a	2x + 3 > 0	b	2x + 3 < 0	c	x + 4 > 0	d	x + 6 > 0				
17	(0,0) is the solution	on o	f inequality								
a	x + y > 2	b	2x - y > 4	c	x - y < 1	d	2x + y > 10				
18	(1,2) is the solution	on o	f inequality								
a	x - y < 4	b	x - y > 4	c	x - y = 4	d	x - y = 0				
19	(0,0) is the solution	on o	f inequality								
a	7x + 2y > 3	b	x - 3y > 0	c	x + 2y < 6	d	x - 3y < 0				
20	(0,1) is the solution	on o	f inequality		A.						
a	x - 3y > 0	b	x - 5y > 0	c	x + y > 0	d	x < 0				
21	(1,0) is solution of	f in	equality		- A						
a	7x + 2y < 8	b	3x + y > 6	c	x-y<0	d	-3x + y > 0				
22	(1, -3) is the solu	itior	of								
a	x + y > 0	b	x + y < 0	c	x + y = 0	d	x - y = 0				
23	(1,1) is the solution	on o	f inequality								
a	x + y < 1	b	2x + y < 1	С	2x - y < 1	d	x-y<1				
24	Point (1,2) satisfy	the the	inequality		1						
a	2x + y > 5	b	2x + y < 3	c	2x + y < 5	d	$2x + y \ge 5$				
25	(0,2) is the solution	on o	f inequality		HUL						
a	3x + 5y > 7	b	3x + 5y < 7	c	<i>x</i> > 0	d	x < 0				
26	The point (1,3) lie	es ir	the solution region	of	the inequality:						
a	x + y < 0	b	x + y < 2	c	x + y < 2	d	x-y<0				
27	2x + y < 6 is satisfy	isfie	d by which point?								
a	(3,1)	b	(1,3)	c	(0,7)	d	(4,0)				
28	Solution of the ine	equa	lity $2x + y < 5$ is								
a	(2,1)	b	(1,2)	c	(2,3)	d	(5,0)				
29	(1,0) is not the so	lutio	on of inequality								

a	9x + 2y < 8	b	-x + 3y < 0	c	3x + 5y < 6	d	3x + 5y < 4				
30	Which one satisfie	s th	e inequality $x + 2y$	/ <	6?						
a	(4,1)	b	(1,3)	c	(1,4)	d	(3,1)				
31	2x + 3y < 5 is satisfied by										
a	(1,1)	b	(1,2)	c	(2,3)	d	(-1,1)				
32	(1,0) is solution o	f in	equality								
a	9x + 2y < 8	b	-x + 3y < 0	c	3x + 5y < 0	d	3x + y < 0				
33	Point satisfies x –	<i>y</i> <	< 2								
a	(3,1)	b	(1,-1)	c	(0,-2)	d	(-1,1)				
34	Which of the follo	win	g ordered pairs does	s no	t satisfy $4x - 3y <$	2					
a	(3,0)	b	(1,1)	c	(-2,1)	d	(0,0)				
35	Which one is not a	ı sol	ution of in-equality	2 <i>x</i>	+3y > 0:						
a	(-1, -2)	b	(1,2)	c	(2,3)	d	(0,1)				
36	Solution set of ine	qua	$1 = 2x - 3 \ge 0 e$	qua	ls:	7					
a	$\left[\frac{3}{2},\infty\right]$	b	$\left[\frac{3}{2},\infty\right[$	c	$\left[\frac{2}{3},\infty\right]$	d	$\left[\frac{2}{3},\infty\right[$				
37	(3,2) is not solution	on o	f inequality			V.					
a	x + y > 2	b	3x + 5y > 7	c	$x + y \le 1$	d	3x - 5y < 3				
38	The point $(-1,2)$	satis	sfies the inequality								
a	x - y > 4	b	$x - y \ge 4$	c	x + y < 4	d	x + y > 4				
39	(1,0) is not solution	on o									
a	7x + 2y < 8	b	x - 3y < 0	c	3x + 2y < 8	d	7x + 2y > 6				
40	The graph of $4y \ge$	<u>5</u> 5	71100	lane							
a	Lower	b	Upper	c	Left	d	Right				
41			on of inequality $x + \frac{1}{2}$	- 2 <u>´</u>							
a	x + 2y = 6	b	x - 2y = 6	c	x + 2y = -6	d	x - 2y = -6				
42	The non-negative	con									
a	Free variables	b	Decision	С	Vertex	d	Convex				
1.5			variables								
43			atisfied the inequali	ty is							
a	Solution	b	Point	c	Variable	d	None of these				
44	The solution regio	n re	stricted to 1st quadra	ant	is called						

		_										
a	Solution region	b	Feasible region	c		d None of these						
45	A point of a solution region where two of its boundary lines intersect, is called											
a	Boundary points	b	Single point		Zero points		Corner point					
46	The values of the variables which satisfies the inequality are called											
a	Solution set	b	Constraints		Constants		None of these					
47	The variables used in inequality are called											
a	Solution	b	Constraints	c	Constants	d	None of these					
48	A point which is used to determine solution area is called											
a	Corner point	b	Test point	c	Optimal point	d	Point					
49	Feasible region is always lie in quadrant.											
a	Ι	b	II	c	III	d	IV					
50	A linear inequality concerning the problem from everyday life is named											
a	Problem	b	Problem	c	Non-negative /	d	Linear					
	constraint		constraints		constrains		programming					
51	The system of linear inequalities involved in the problem concerned are called											
a	Problem	b	Solution	c	Non-negative	d	Linear					
	constraints				constrains		programming					
52	A function which is to be maximized or minimized is called											
a	Objective	b	Objective	c	Feasible region	d	None of these					
	function		solution									
53	The process used to maximize or minimize is called											
a	Optimization	b	Solution	c	Procedure	d	None of these					
54	The feasible solution which maximizes or minimizes the objective function is called											
a	Optimal solution	b	Objective	С	Solution	d	Objective					
			function				solution					
55	The maximum and minimum values of the objective function occur in the feasible											
	region at											
a	Corner point	b	Boundary point	c	Origin	d	None of these					

MCQ's Answers Key

1	2	3	4	5	6	7	8	9	10
ь	a	a	b	d	b	c	d	a	c
11	12	13	14	15	16	17	18	19	20
a	b	b	b	b	b	c	a	c	c
21	22	23	24	25	26	27	28	29	30
a	b	d	c	a	d	b	b	a	d
31	32	33	34	35	36	37	38	39	40
d	b	d	a	a	b	c	c	b	b
41	42	43	44	45	46	47	48	49	50
a	b	a	b	d	a	b	b	a	a
51	52	53	54	55					
a	a	a	a	a					

IMPORTANT SHORT QUESTIONS

- 1. Define Linear Inequality?
- 2. What do you know about half plane?
- 3. If a non-vertical line divides a plane into two parts, then write the name of that two planes?
- **4.** Define Associated Equation?
- 5. Graph the inequality x + 2y < 6.
- **6.** Graph the linear inequalities $2x \ge -3$ in xy-plane.
- 7. Graph the linear inequalities $y \le 2$ in xy-plane.
- **8.** Define Corner Point or Vertex?
- 9. Show that the ordered pair (1,1) is a solution of inequality x + 2y < 6.
- 10. Graph the solution set of the following linear inequality in xy-plane. $2x + y \le 6$.
- 11. Graph the solution set of the following linear inequality in xy-plane. $3x + 7y \ge 21$.
- 12. Graph the solution set of the following linear inequality in xy-plane. $3x 2y \ge 6$.
- 13. Graph the solution set of the following linear inequality in xy-plane. $5x 4y \le 20$.
- **14.** Graph the solution set of the following linear inequality in xy-plane. $2x + 1 \ge 0$.
- 15. Graph the solution set of the following linear inequality in xy-plane. $3y 4 \le 0$.
- **16.** Graph the solution set of the following linear inequality in xy-plane.

$$3x + 7y \ge 21, \quad x - y \le 2$$

17. Graph the solution set of the following linear inequality in xy-plane.

$$4x - 3y \le 12$$
, $x \ge \frac{-3}{2}$

18. Indicate the solution region of the following systems of linear inequalities by shading:

$$x + y \le 5$$
, $-2x + y \le 2$, $x \ge 0$.

- 19. Define Problem Constraint.
- 20. Define Problem Constraints.
- 21. Define non-negative Constraints.
- 22. Define Decision Variables.
- 23. Define Feasible Region.
- **24.** Define Feasible Solution.
- 25. Define Feasible Solution Set.
- 26. Define Convex Region.
- 27. Define Objective Function.
- 28. Define Optimal Solution.
- 29. State the Theorem of Linear Programming Problem.
- **30.** How would you obtain the optimal solution?

IMPORTANT LONG QUESTIONS

1. Indicate the solution region of the following systems of linear inequalities by shading:

$$3x + 7y \le 21$$
, $2x - y \ge -3$, $x \ge 0$.

2. Graph the solution region of the following system of linear inequalities and find the corner points

$$2x - 3y \le 6$$
, $2x + 3y \le 12$, $x \ge 0$

3. Graph the solution region of the following system of linear inequalities and find the corner points

$$x + y \le 5$$
, $-2x + y \le 2$, $y \ge 0$

4. Graph the feasible region of the following system of linear inequalities and find the corner points

$$2x - 3y \le 6$$
, $2x + 3y \le 12$, $x \ge 0$, $y \ge 0$

5. Graph the feasible region of the following system of linear inequalities and find the corner points

$$x + y \le 5$$
, $-2x + y \le 2$, $x \ge 0$, $y \ge 0$

6. Graph the feasible region of the following system of linear inequalities and find the corner points

$$x + y \le 5$$
, $-2x + y \ge 2$, $x \ge 0$, $y \ge 0$

7. Graph the feasible region of the following system of linear inequalities and find the corner points

$$3x + 7y \le 21$$
, $x - y \le 3$, $x \ge 0$, $y \ge 0$

8. Graph the feasible region of the following system of linear inequalities and find the corner points

$$2x + 3y \le 18$$
, $2x + y \le 10$, $x + 4y \le 12$. $x \ge 0$, $y \ge 0$

9. Graph the feasible region of the following system of linear inequalities and find the corner points

$$2x + 3y \le 18$$
, $x + 4y \le 12$, $3x + y \le 12$. $x \ge 0$, $y \ge 0$

10. Graph the feasible region of the following system of linear inequalities and find the corner points

$$x + 3y \le 15$$
, $2x + y \le 12$, $4x + 3y \le 24$. $x \ge 0$, $y \ge 0$

11. Maximize f(x, y) = 2x + 5y; subject to the constraints:

$$2y - x \le 8$$
; $x - y \le 4$; $x \ge 0$; $y \ge 0$

12. Maximize f(x, y) = x + 3y; subject to the constraints:

$$2x + 5y \le 30$$
; $5x + 4y \le 20$; $x \ge 0$; $y \ge 0$

13. Maximize z = 2x + 3y; subject to the constraints:

$$3x + 4y \le 12$$
; $2x + y \le 4$; $2x - y \le 4$; $x \ge 0$; $y \ge 0$

14. Minimize z = 2x + y; subject to the constraints:

$$x + y \ge 3$$
; $7x + 5y \le 35$; $x \ge 0$; $y \ge 0$

15. Maximize the function defined as; f(x, y) = 2x + 3y; subject to the constraints:

$$2x + y \le 8$$
; $x + 2y \le 14$; $x \ge 0$; $y \ge 0$

16. Minimize z = 3x + y; subject to the constraints:

$$3x + 5y \ge 15$$
; $x + 3y \ge 9$; $x \ge 0$; $y \ge 0$

UNIT

6

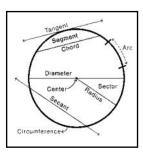
Conic


Section

DEFINITIONS + SUMMARY

CONIC SECTIONS

Conic sections or simply **conics**, are the curves obtained by cutting a (double) right circular cone by a plane. Let RS be a line through the centre C of a given circle and perpendicular to its plane. Let A be a fixed point on RS. All lines through A and points on the circle generate a **right circular cone**. The lines are called rulings or generators of the cone. The surface generated consists of two parts, called **nappes**, meeting at the fixed-point A, called the **vertex** or **apex** of the cone. The line **RS** is called **axis** of the cone.


- If the cone is cut by a plane perpendicular to the axis of the cone, then the section is a circle.
- If the cutting plane is slightly tilted and cuts only one nappe of the cone, the resulting section is an **ellipse**.
- If the intersecting plane is parallel to a generator of the cone, but intersects its one nappe only, the curve of intersection is a **parabola**.
- If the cutting plane is parallel to the axis of the cone and intersects both of its nappes, then the curve of intersection is a **hyperbola**.

CIRCLE

The set of all points in the plane that are equally distant from a fixed point is called a circle. The fixed point is called the *centre* of the circle and the distance from the *center* of the circle to any point on the circle is called the *radius* of the circle.

A line segment whose end points lie on a circle is called a *chord* of the circle. A *diameter* of a circle is a chord containing the centre of the circle.

EQUATION OF CIRCLE IN STANDARD FORM

If C(h, k) is centre of a circle, r its radius and P(x, y) any point on the circle then equation of circle is given as

$$(x-h)^2 + (y-k)^2 = r^2 - -- (i)$$

- If the centre of the circle is origin, then equation (i) reduces to $x^2 + y^2 = r^2$.
- If r = 0, the circle is called a *point circle* which consists of the centre only.
- $x = r \cos \theta$, $y = r \sin \theta$ are called *parametric equation* of the circle.

GENERAL FORM OF AN EQUATION OF A CIRCLE

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ is called **general form** of an equation of a circle with centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

Note

Every second-degree equation in two variables "x" and "y" in which coefficient of x^2 and y^2 is same and contains no term involving the product xy, represents the circle.

EQUATION OF TANGENT LINE TO THE CIRCLE

A tangent to a curve is a line that touches the curve without cutting through it.

The equation of tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at the point $P(x_1, y_1)$ is given by

$$y - y_1 = -\frac{x_1 + g}{y_1 + f}(x - x_1)$$
 or $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$

EQUATION OF NORMAL LINE TO THE CIRCLE

The **normal** to the curve at $P(x_1, y_1)$ is the line through $P(x_1, y_1)$ perpendicular to the tangent to the curve at P.

The equation of normal to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at the point $P(x_1, y_1)$ is given by

$$y - y_1 = \frac{y_1 + f}{x_1 + g}(x - x_1)$$
 or $(y - y_1)(x_1 + g) = (x - x_1)(y_1 + f)$

Note

The line y = mx + c intersects the circle $x^2 + y^2 = r^2$ at the most two points.

THE POSITION OF THE POINT WITH RESPECT TO THE CIRCLE

- The point $P(x_1, y_1)$ lies outside the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ if $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c > 0$
- The point $P(x_1, y_1)$ lies inside the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ if $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c < 0$
- The point $P(x_1, y_1)$ lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ if $x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c = 0$

LENGTH OF THE TANGENT TO A CIRCLE

Let $P(x_1, y_1)$ be a point outside the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ then length of point $P(x_1, y_1)$ to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is given by

Length of the tangent =
$$\sqrt{{x_1}^2 + {y_1}^2 + 2gx_1 + 2fy_1 + c}$$

PROPERTIES OF CIRCLE

- Length of a diameter of the circle $x^2 + y^2 = a^2$ is 2a.
- Perpendicular dropped from the centre of a circle on a chord bisects the chord.
- The perpendicular bisector of any chord of a circle passes through the centre of the circle.
- The line joining the centre of a circle to the midpoint of a chord is perpendicular to the chord.
- Congruent chords of a circle are equidistant from the centre.
- Measure of the central angle of a minor arc is double the measure of the angle subtended in the corresponding major arc.
- An angle in a semi-circle is a right angle.
- The tangent to a circle at any point of the circle is perpendicular to the radial segment at that point.
- The perpendicular at the outer end of a radial segment is tangent to the circle.
- Normal lines of a circle pass through the centre of the circle.
- The straight line drawn from the centre of a circle perpendicular to a tangent passes through the point of tangency.
- The midpoint of the hypotenuse of a right triangle is the circumcentre of the triangle.
- The perpendicular dropped from a point of a circle on a diameter is a mean proportional between the segments into which it divides the diameter.

CONIC SECTION

Let L be a fixed line in a plane and F be a fixed point not on the line L. Suppose |PM| denotes the perpendicular distance of a point P(x, y) from the line L. The set of all points P in the plane such that

$$\frac{|PF|}{|PM|} = e \text{ (a positive constant)}$$

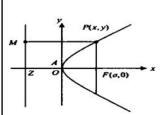
is called a conic section.

- (i) If e = 1, then the conic is a parabola.
- (ii) If 0 < e < 1, then the conic is an ellipse.
- (iii) If e > 1, then the conic is a hyperbola.

The fixed line L is called a **directrix** and the fixed-point F is called a **focus** of the conic.

The number *e* is called the **eccentricity** of the conic.

PARABOLA


Let e = 1 and F be a fixed point and L is fixed line not containing F. Let P(x, y) be the point in the plane and |PM| be the perpendicular distance of a point P(x, y) from the line L. The set of all points P such that

$$\frac{|PF|}{|PM|} = 1 \ or \ |PF| = |PM|$$

is called parabola.

OR The set of all points in a plane which is equidistant from a given fixed line in the plane is called **Parabola**.

- The fixed point is called *focus* of the parabola.
- The fixed line is called *directrix* of the parabola.

STANDARD EQUATION OF PARABOLA

$$y^2 = (x + a)^2 - (x - a)^2 = 4ax$$
 or $y^2 = 4ax$

DEFINITIONS

- (i) The line through the focus and perpendicular to the directrix is called *axis* of the parabola.
- (ii) The point where the axis meets the parabola is called *vertex* of the parabola.
- (iii) In parabola, the fixed point is called *focus* of the parabola.
- (iv) In parabola, the fixed line is called *directrix* of the parabola
- (v) A line passing through vertex and perpendicular to the axis of parabola is called *tangent at vertex* of parabola.
- (vi) Line joining two distinct points on a parabola is called a *chord* of the parabola.
- (vii) A chord passing through the focus of a parabola is called a *focal chord* of the parabola.
- (viii) The focal chord perpendicular to the axis of the parabola is called *latus rectum* of the parabola.

PARAMETRIC EQUATION OF PARABOLA

The point $(at^2, 2at)$ lies on the parabola $y^2 = 4ax$ for any real t. $x = at^2$, y = 2at are called parametric equation of the parabola $y^2 = 4ax$.

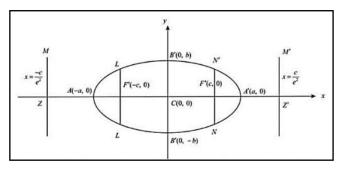
GENERAL FORM OF AN EQUATION OF PARABOLA

Let P(x, y) be any point on the parabola having F(h, k) as focus and M be the point on directrix lx + my + n = 0

By definition, equation of parabola is given by

$$|PM| = \frac{|lx + my + n|}{\sqrt{l^2 + m^2}} \text{ or } (x - h)^2 + (y - k)^2 = \frac{(lx + my + n)^2}{l^2 + m^2}$$

Sr.No.	1	2	3	4
Equation	$y^2 = 4ax$	$y^2 = -4ax$	$x^2 = 4ay$	$x^2 = -4ay$
Focus	(a, 0)	(-a, 0)	(0, a)	(0, -a)
Directrix	x = -a	x = a	y = -a	y = a
Vertex	(0,0)	(0,0)	(0,0)	(0,0)
Graph	x x	F O X	F x	F


ELLIPSE

Let 0 < e < 1 and F be a fixed point and L is fixed line not containing F. Let P(x, y) be the point in the plane and |PM| be the perpendicular distance of a point P(x, y) from the line L. The set of all points P such that

$$\frac{|PF|}{|PM|} = e \quad (0 < e < 1)$$

is called an ellipse.

OR The set of all points P in a plane, such that distance of each point from a fixed point bears a constant ratio (less than one) to the distance from a fixed line is called an ellipse.

The number e is **eccentricity** of the ellipse, F a **focus** and L a **directrix**.

DEFINITIONS

Let F' and F be two foci of the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - - - (1)$$

- The midpoint C of FF is called the **Centre** of the ellipse. In case of (1) Centre is C(0,0).
- The intersection of (1) with the line joining the foci are obtained by setting y = 0 into (1). These are the points A'(-a, 0) and A(a, 0). The points A and A' are called **vertices** of the ellipse.
- The line segment AA' = 2a is called the *major axis* of the ellipse. The line through the centre of (1) and perpendicular to the major axis has its equation as x = 0. It meets (1) at points B'(0,b) and B(0,-b). The line segment BB' = 2b is called the *minor axis* of the ellipse and B', B are some-times called the *covertices* of the ellipse.
- The length of the major axis is greater than the length of the minor axis.
- Foci of an ellipse always lie on the major axis.
- Each of the focal chords LFL' and NF'N' perpendicular to the major axis of an ellipse is called a *latusrectum* of the ellipse. Thus, there are two *laterarecta* of an ellipse. The length of each latus-rectum is $\frac{2b^2}{a}$
- If the foci lie on the y-axis with coordinates (0, -ae) and (0, ae), then equation of the ellipse

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, a > b$$

Note

In each ellipse:

- (i) Length of major axis = 2a,
- (ii) Length of minor axis = 2b,
- (iii) Foci lie on the major axis.
- (iv) Length of Latusrectum = $\frac{2b^2}{a}$

STANDARD FORM OF THE ELLIPSE

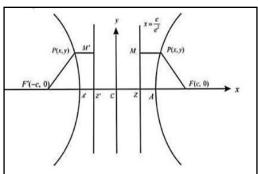
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

PARAMETRIC EQUATION OF ELLIPSE

The point $(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for all real θ .

 $x = a \cos \theta$, $y = b \sin \theta$ are called parametric equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Summary of standard Ellipses									
Equation	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1, a > b$ $c^{2} = a^{2} - b^{2}$	$\frac{x^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} = 1, a > b$ $c^{2} = a^{2} - b^{2}$							
Foci	(±c, 0)	(0, ±c)							
Directrices	$x = \pm \frac{c}{e^2}$	$y = \pm \frac{c}{e^{\lambda}}$							
Major axis	y = 0	0 = x							
Vertices	(±σ, 0)	(0, ±0)							
Convertices	(0, ±b)	(±b, 0)							
Centre	(0, 0)	(0, 0)							
Eccentricity	e=	$e = \frac{c}{a} < 1$							
Graph	Fig. 1								


HYPERBOLA

Let e > 1 and F be a fixed point and L is fixed line not containing F. Let P(x, y) be the point in the plane and |PM| be the perpendicular distance of a point P(x, y) from the line L. The set of all points P such that

$$\frac{|PF|}{|PM|} = e > 1$$

is called hyperbola.

OR The set of all points P in a plane, such that distance of each point from a fixed point bears a constant ratio (greater than one) to the distance from a fixed line is called hyperbola.

STANDARD FORM OF THE HYPERBOLA

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

PARAMETRIC EQUATION OF THE HYPERBOLA

The point $(a \sec \theta, b \tan \theta)$ lies on the ellipse $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ for all real θ .

 $x = a \sec \theta$, $y = b \tan \theta$ are called parametric equation of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Summary of Standard Hyperbolas										
Equation	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$								
Foci	(±c, 0)	(0, ±c)								
Directrices	$x = \pm \frac{c}{e^2}$	$y = \pm \frac{c}{e^2}$								
Transverse axis	y = 0	x = 0								
Vertices	(±a, 0)	(0, ±a)								
Eccentricity	$e = \frac{c}{a} > 1$	$e=\frac{c}{a}>1$								
Centre	(0, 0)	(0, 0)								
Graph	Fig. 1									

MCQ's

Choose the correct Option.

1	TD1 . C.1	• 1	(4)2 . (.	2) 2	0.		
1	The centre of the c	circl	$e(x-1)^2 + (y+1)^2$			1	
a			(-1,3)		(1,3)	d	(1,-3)
2	Equation of circle	wit	h centre at origin an	ıd √	5 radius is:		
a	$x^2 + y^2 = \sqrt{5}$	b	$x^2 + y^2 = 5$	c	$x^2 + y^2 = 25$	d	$x^2 - y^2 = 5$
3	Radius of the circl	$e x^2$	$x^2 + y^2 + 2gx + 2f$	<u>y</u> +	c = 0 is:		
a	$\sqrt{g^2+f^2+c}$	b	$\frac{\sqrt{g^2 - f^2 - c}}{\text{e having equation } x}$	c	$\sqrt{g^2+f^2-c}$	d	$\sqrt{-g^2+f^2-c}$
4	The centre of the c	circl	e having equation a	c ² +	$y^2 + 12x - 10y$	= 0	is:
a	(6,5)	b	(-6,5)		(5, 6)	d	(6,-6)
5	An angle in semi-	circl	e is of measure:				
a	30°	b	40°	c	60°	d	90°
6	The focus of parab	ola	$y^2 = 4ax$ is:				
a	(0,a)				(a, 0)	d	(-a, 0)
7			parabola $y^2 = 4ax$	is:			
a	x = -a	b	y = -a	c	x = a	d	y = a
8	The directrix of pa					4	
a			x - 2 = 0			d	y - 2 = 0
9			major axis of the el			<i>Y</i>	4
a	Foci		Vertices		Covertices		Directrix
10			segment joining the				
a	Centre		Vertex		Directrix	d	Major axis
11	Centre of the circle	$e x^2$	$+y^2 + 2gx + 2f$	<u>y +</u>	c = 0 is:	1	
a			(-g,f)	C	(g,-f)	d	(g,f)
12			of the circle $x^2 + y$			1	
a 12	2a	b	<u>−2a</u>	C	4 <i>a</i>	d	0
13	An angle in a sem			-	Obtaca anala	.1	Nana
14			Acute angle ypotenuse of a right				None
a			In-Centre		Ortho-Centre		None
15						u	INOIC
13	Length of Latusre	ctun	n of the ellipse $\frac{x^2}{a^2}$ +	$\frac{b^2}{b^2}$			
a	4 <i>a</i>	b	$2a^2$	c	$2b^2$	d	b^2
			<u>b</u>		\overline{a}		\overline{a}
16			n of the parabola y^2				_
a	4a	b	$2a^2$	c	$2b^2$	d	b^2
		_	<u>b</u>		a		a
17			minor axis of the el			1	
a 10	Foci	b	Vertices		Covertices	d	Directrix
18			h equation $x^2 + 4y$			1	(0 + 0)
a	(±4,0)	b	$(0,\pm 4)$	c	(±2,0)	d	$(0,\pm 2)$
19	Asymptotes are ve				Ellingo	.1	I Iv va oula o 1 o
20	Circle	b r cir	Parabola	C	Ellipse	d	Hyperbola
20			θ are called param			. ا	Uvnorholo
a	Circle	D	Parabola	C	Ellipse	a	Hyperbola

21	$y = at^2$ $y = 2at$	are called parametric ed	quation of the		
a	Circle	b Parabola	c Ellipse	d	Hyperbola
22		$b \sin \theta$ are called param			
a	Circle	b Parabola	c Ellipse	d	Hyperbola
23	$y = a \sec \theta \ y =$	b tan θ are called param	netric equation of the		
a	Circle	b Parabola	c Ellipse	d	Hyperbola
24	$(x-h)^2 + (y-h)^2$	$(k)^2 = r^2$ is the standard	form of the ?		
a	Circle	b Parabola k) ² = r^2 is the standard b Parabola	c Ellipse	d	Hyperbola
25	$y^2 = 4ax$ is the s	tandard form of the	?		
a	Circle	b Parabola	c Ellipse	d	Hyperbola
26	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is the	standard form of the	_?		
a	Circle	b Parabola	c Ellipse	d	Hyperbola
27	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is the	standard form of the	_?		
a	Circle	b Parabola	c Ellipse	d	Hyperbola
28	Vertex of the para	bola $y^2 = 4ax$ is:			
a	(0,0)	b (0, a)	c (a, 0)	d	(a,a)
29	The coordinates o	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is:		
a			$c = b^2$	d	$(0,\pm a)$
30	Vertices of $\frac{x^2}{a^2} + \frac{y}{b}$ ($\pm b$, 0)	$\frac{a^2}{a^2} = 1, a > b$ is:	5 0	/	
a	$(\pm b,0)$	$b \mid (0, \pm b)$	$c \mid (\pm a, 0)$	d	$(0,\pm a)$
31	Length of latusrec	tum of the ellipse $\frac{2}{3} + \frac{1}{3}$	$\frac{y^2}{25} = 1$ is:	V	
a	25	b 25	c 25	d	$\frac{3}{25}$
22	6	3	36	Ų	25
32		neter of the circle $(x +$	$(5)^2 + (y - 8)^2 = 12 i$		
a	$4\sqrt{3}$	$\begin{vmatrix} b \end{vmatrix} 2\sqrt{3}$	c 12	d	24
33		uidistance from a fixed			T
a	Circle	b Parabola	c Ellipse	d	Hyperbola
		tum of the parabola x^2		1	4.0
a	5	b 20	c 5/4	d	10
35	If $a = b$ then equal	$ation \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ repres}$	sent.		
a	Circle	b Parabola	c Ellipse	d	Hyperbola
36	Foci of $\frac{x^2}{25} + \frac{y^2}{16} =$	1			
a	(±4,0)	b (±5,0)	c (±3,0)	d	$(0,\pm 3)$
37	Axis of parabola				
a	y = 0	$b \mid x = 0$	$c \mid x = y$	d	x = 1
38	Centre of the circl	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 13 = 0		
a	(3, -2)	b $(-3, -2)$ neter of the circle $(x - $	c (-3,2)	d	(3, 2)
39			$(5)^2 + (y-3)^2 = 8$ is:		
a	64	b 16	$c \mid 2\sqrt{2}$	d	$4\sqrt{2}$
40	The line $y = mx$	+ c will be tangent to the	$e \ circle \ x^2 + y^2 = a^2$	if:	
a	$\frac{a}{m}$	$b \pm \sqrt{1-m^2}$		d	$c = \pm a\sqrt{m^2 - 1}$
41		$le (x-5)^2 + (y-3)^2$	= 8 is:		

a	64	b 4	С	2	d	$2\sqrt{2}$
42	Foci of the ellipse	$\frac{x^2}{x^2} + \frac{y^2}{x^2} = \frac{x^2}{x^2}$	1 are:			
				(1 0)	.1	(0 1)
a 42	$(\pm a, 0)$	$b \mid (0, \pm a)$	_	(— / /	d	$(0,\pm ae)$
43	If a circle of a line				d	Diameter
a 44	Chord					
44	8	of fatusrec		$\frac{\text{abola } (y-2)^2 = -4}{4}$	$\frac{1}{d}$	
a		b 1/4	c	4	a	16
45	Length of major as		llipse is:			
a	2a	b 2 <i>b</i>	c	4a	d	4 <i>b</i>
46	Length of minor a		llipse is:			
a	2a	b 2 <i>b</i>	С	4a	d	4 <i>b</i>
47	Foci of hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	1 is:			
a	$(a,\pm c)$	b (0,0)	c	$(\pm c,0)$	d	(0,0)
48	Foci of hyperbola	$\frac{x^2}{16} - \frac{y^2}{4} = 1$	1 is:			
a	$(\pm 4,0)$	b (0, ±4		$(\pm 2,0)$	d	$(0,\pm 2)$
49	The two separate p	art of hype	erbola are calle	d:		
a	Foci	b Vertic			d	Directions
50	Length of major ar	<mark>ıd</mark> minor ax	kis of the ellips	$e 4x^2 + 9y^2 = 36a$	are:	
a	6,4	b 4,6	c	3,2	d	2,3
51	Eccentricity of the					4
a	e = 1		e < 1 c	e>1	d	e = 0
52	Eccentricity of the					
a	e = 1	$b \mid 0 < a$		e > 1	d	e = 0
53	Eccentricity of the			A		
a	e = 1	$b \mid 0 < \epsilon$	e < 1 c	e>1	d	e = 0
54	The conic is called					
a	e = 1			e > 1	d	e = 0
55				if they have same:		1
a		b Diame		Chord	d	Centre
56	Opening parabola			13 2 3		1
a	Downward	b Upwa	rd c	Leftward	d	Rightward
57	Vertices of $\frac{y^2}{16} - \frac{x^2}{49}$		MAI	NW		
a	(±4,0)	$ b (0,\pm 4)$		$(\pm 7,0)$	d	$(0,\pm7)$
58	Length of diamete		$x^2 + y^2 = 9.$			
a	6	b 3	c	9	d	4
59	Focus of parabola		y is:			
a	(0,4)	b (4,0)	c	(0,-4)	d	(-4,0)
60	Parabola having ed					,
a	Downward	b Upwa			d	Rightward
61	Conic sections are					1
a	A plane	b A line		Two lines	d	A sphere
62	The length of dian	neter of the	circle $x^2 + y^2$	-4x - 12 = 0 is:		
	6	h 7	C	1 0	d	9
63				$x^2 + 6x - 3y + 3 = 0$		

a	2	b 3	c 4	d 1							
64	The coordinates of	vertex of parabola <i>x</i>	$+8 - y^2 + 2y = 0$ wil	ll be							
a	(-9,1)	b (9,1)	c (9, -1)	d (-9, -1)							
65	The line $y = mx + mx$	+ <i>c</i> intersects the circle	$e^{x^2 + y^2} = r^2$ at the m	nost							
a	One point	b Two points	c Three points	d Four points							
66	If the cone is cut by	y a plane perpendicula	er to the axis of the con-	e, then the section is a							
a	Circle	b Parabola	c Ellipse	d Hyperbola							
67	If the intersecting plane is parallel to a generator of the cone, but intersects its one nappe										
	only, the curve of i										
a	Circle	b Parabola	c Ellipse	d Hyperbola							
68		e is slightly tilted and	cuts only one nappe of	f the cone, the resulting							
	section is			1 ** 1 1							
a	Circle	b Parabola	c Ellipse	d Hyperbola							
69			of the cone and interse	cts both of its nappes,							
	then the curve of in		F11'	1 17 1 1							
a 70	Circle	b Parabola	c Ellipse	d Hyperbola							
70				called of the parabola.							
a 71	Axis	b Focus	c Directrix	d Vertex							
71	In parabola, the fix		of the parabola.	1 374							
a 72	Axis	b Focus	c Directrix	d Vertex							
72	In parabola, the fix		of the parabola	1 Vantan							
73	Axis The point values the	b Focus ne axis meets the parab	c Directrix	d Vertex							
	Axis	b Focus	c Directrix	ne parabola. d Vertex							
74		rough the focus of a p		of the parabola							
	Focal chord	b Latusrectum	c Directrix	d Vertex							
75			of the parabola is calle								
	Focal chord			d Vertex							
a 76			c Directrix	u vertex							
76	Axis of the parabol $x = 0$			$ \mathbf{d} x = -a$							
77	x = 0		c y=0	d x = -a							
	Foci of the ellipse Major axis	b Minor axis	la v ovia	d y-axis							
78	Axis of the parabo		c x-axis	u j y-axis							
	x = 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c y = 0	d x = -a							
79	x = 0 Axis of the parabol		C y-0	u xu							
	x = 0		$\begin{vmatrix} a & a \\ a & b \end{vmatrix} = 0$	$ \mathbf{d} x = -a$							
80	x = 0 Centre of hyperbol	$\begin{vmatrix} b & x = a \end{vmatrix}$	c y = 0	d x = -a							
	(0,0)		c (1,1)	d (1,0)							
a	(0,0)	b (0,1)	c (1,1)	u (1,0 <i>)</i>							

MCQ's Answers Key

1	2	3	4	5	6	7	8	9	10
d	b	c	b	d	c	c	d	b	a
11	12	13	14	15	16	17	18	19	20
a	a	a	a	c	a	c	a	d	a
21	22	23	24	25	26	27	28	29	30
ь	c	d	a	b	c	d	a	c	С
31	32	33	34	35	36	37	38	39	40
ь	a	a	a	a	c	b	a	d	c
41	42	43	44	45	46	47	48	49	50
d	c	a	c	a	b	c	a	c	a
51	52	53	54	55	56	57	58	59	60
a	b	c	d	d	a	b	a	c	ь
61	62	63_	64	65	66	67	68	69	70
a	c	d	a	b	a	b	c	d	a
71	72	73	74	75	76	77	78	79	80
ь	С	d	a	b	С	a	С	a	a

IMPORTANT SHORT QUESTIONS

- 1. Define Conic Sections.
- 2. Define Circle and its Centre.
- 3. Write equation of circle in standard form and in general form.
- **4.** Write an equation of the circle with Centre (-3, 5) and radius 7.
- 5. Show that the equation $5x^2 + 5y^2 + 24x + 36y + 10 = 0$ represents a circle. Also find its centre and radius.
- **6.** Find an equation of the circle having the join of $A(x_1, y_1)$ and $B(x_2, y_2)$ as a diameter.
- 7. Find an equation of the circle with centre at (5, -2) and radius 4.
- 8. Find an equation of the circle with centre at $(\sqrt{2}, -3\sqrt{3})$ and radius $2\sqrt{2}$.
- 9. Find an equation of the circle with ends of a diameter at (-3, 2) and (5, -6).
- 10. Find the centre and radius of the circle with $x^2 + y^2 + 12x 10y = 0$.
- 11. Find the centre and radius of the circle with $5x^2 + 5y^2 + 14x + 12y 10 = 0$.
- 12. Find the centre and radius of the circle with $x^2 + y^2 6x + 4y + 13 = 0$.
- 13. Find the centre and radius of the circle with $4x^2 + 4y^2 8x + 12y 25 = 0$.
- 14. Determine whether the point P(-5, 6) lies outside, on or inside the circle:

$$x^2 + y^2 + 4x - 6y - 12 = 0$$

- 15. Find the condition that the line y = mx + c touches circle $x^2 + y^2 = a^2$ at a single point.
- 16. Find the length of the tangent from the point P(-5, 10) to the circle

$$5x^2 + 5y^2 + 14x + 12y - 10 = 0.$$

- 17. Write down equations of tangent and normal to the circle $x^2 + y^2 = 25$ at (4,3).
- 18. Write down equations of tangent and normal to the circle

$$3x^2 + 3y^2 + 5x - 13y + 2 = 0$$
 at $\left(1, \frac{10}{3}\right)$

- 19. Check the position of the point (5,6) with respect to the circle $x^2 + y^2 = 81$
- 20. Check the position of the point (5,6) with respect to the circle

$$2x^2 + 2y^2 + 12x - 8y + 1 = 0$$

21. Find the length of the tangent drawn from the point (-5,4) to the circle

$$5x^2 + 5y^2 - 10x + 15y - 131 = 0$$

- **22.** Define eccentricity of the conic.
- 23. Define Parabola.
- **24.** Define axis and vertex of the parabola.
- **25.** Define latus rectum of the parabola.
- **26.** Find the focus, vertex and directrix of the parabola $y^2 = 8x$
- 27. Find the focus, vertex and directrix of the parabola $x^2 = -16y$
- **28.** Find the focus, vertex and directrix of the parabola $x^2 = 5y$
- **29.** Find the focus, vertex and directrix of the parabola $y^2 = -12x$
- **30.** Find the focus, vertex and directrix of the parabola $x^2 = 4(y-1)$
- 31. Find the focus, vertex and directrix of the parabola $v^2 = -8(x-3)$
- 32. Find the focus, vertex and directrix of the parabola $(x-1)^2 = 8(y+2)$
- 33. Find the focus, vertex and directrix of the parabola $y = 6x^2 1$
- **34.** Write an equation of the parabola with Focus (-3, 1); directrix x = 3

- 35. Write an equation of the parabola with Focus (2,5); directrix y=1
- **36.** Write an equation of the parabola with Focus (-3, 1); directrix x 2y 3 = 0
- 37. Write an equation of the parabola with Focus (-1,0); vertex (-1,2)
- **38.** Write an equation of the parabola with Directrix x = -2; Focus (2, 2)
- **39.** Define Latus rectum of Ellipse.
- **40.** Derive equation of ellipse in standard form.
- $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 41. Find focus and eccentricity of ellipse
- **42.** Find an equation of the ellipse with foci (± 3.0) and minor axis of length 10.
- **43.** Find an equation of the ellipse with foci (0, -1) and (0, -5) and major axis of length 6.
- **44.** Find an equation of the ellipse with foci $(-3\sqrt{3}, 0)$ and vertices $(\pm 6, 0)$.
- **45.** Find an equation of the ellipse with Vertices (-1,1), (5,1); foci (4,1) and (0,1).
- **46.** Find an equation of the ellipse with Vertices $(0, \pm 5)$, eccentricity $\frac{3}{5}$.
- 47. Find an equation of the ellipse with Centre (0,0), focus (0,-3), vertex (0,4).
- **48.** Find the centre, foci, eccentricity, vertices and directrices of the ellipse $x^2 + 4y^2 = 16$.
- **49.** Find the centre, foci, eccentricity, vertices and directrices of the ellipse $9x^2 + y^2 = 18$.
- **50.** Find the centre, foci, eccentricity, vertices and directrices of the ellipse $25x^2 + 9y^2 = 225$.
- **51.** Write standard equation of hyperbola.
- **52.** Define transverse axis of the hyperbola.
- 53. Find an equation of the hyperbola whose foci are $(\pm 4, 0)$ and vertices $(\pm 2, 0)$.
- **54.** Find the foci and eccentricity of the hyperbola $\frac{y^2}{16} \frac{x^2}{49} = 1$
- 55. Find an equation of the hyperbola with centre (0,0), focus (6,0) vertex (4,0).
- **56.** Find an equation of the hyperbola with foci $(\pm 5,0)$, vertex (3,0).
- 57. Find an equation of the hyperbola with foci $(0, \pm 6)$, e = 2.
- 58. Find an equation of the hyperbola with foci $(0, \pm 9)$, directrices $y = \pm 4$
- 59. Find the centre, foci, eccentricity, vertices and equation of directrices of the hyperbola

$$x^2 - y^2 = 9$$

- **60.** Find equation of tangent and normal $y^2 = 4ax$ at the point (x_1, y_1) .
- **61.** Write equation of tangent and normal to the parabola $x^2 = 16y$.
- **62.** Find equation of tangent and normal of $y^2 = 4ax$ at $(at^2, 2at)$. **63.** Find equation of tangent and normal of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $(a\cos\theta, b\sin\theta)$. **64.** Find equation of tangent and normal of $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at $(a\sec\theta, b\tan\theta)$.
- **65.** Find the point of intersection of the conics

$$x^2 + y^2 = 8$$
 and $x^2 - y^2 = 1$

66. Find the point of intersection of the conics

$$3x^2 - 4y^2 = 12$$
 and $3y^2 - 2x^2 = 7$

- **67.** Define rotation of axes.
- **68.** Identify the conic $4x^2 4xy + y^2 6 = 0$.

IMPORTANT LONG QUESTIONS

- 1. Find an equation of the circle which passes through the points A(5,10), B(6,9) and C(-2,3)
- 2. Find an equation of the circle passing through the points A(1,2) and B(1,-2) and touching the line x + 2y + 5 = 0.
- 3. Write an equation of the circle that passes through the points A(4,5), B(-4,-3), C(8,-3).
- **4.** Write an equation of the circle that passes through the points A(-7,7), B(5,-1), C(10,0).
- 5. Write an equation of the circle that passes through the points A(5,6), B(-3,2), C(3,-4).
- 6. Find an equation of the circle passing through A(3, -1), B(0, 1) and having centre at 4x 3y 3 = 0.
- 7. Find an equation of the circle passing through A(-3, 1) with radius 2 and centre at 2x 3y + 3 = 0.
- 8. Find an equation of the circle passing through A(5,1) and tangent to the line 2x y 10 = 0 at B(3, -4).
- 9. Find an equation of the circle passing through A(1, 4), B(-1, 8) and tangent to the line x + 3y 3 = 0.
- 10. Find an equation of a circle of radius a and lying in the second quadrant such that it is tangent to both the axes.
- 11. Show that the lines 3x 2y = 0 and 2x + 3y 13 = 0 are tangents to the circle $x^2 + y^2 + 6x 4y = 0$.
- 12. Show that the circles
 - $x^2 + y^2 + 2x 2y 7 = 0$ and $x^2 + y^2 6x + 4y + 9 = 0$ touch externally.
- 13. Show that the circles
 - $x^{2} + y^{2} + 2x 8 = 0$ and $x^{2} + y^{2} 6x + 6y 46 = 0$ touch internally.
- **14.** Write equations of two tangents from (2,3) to the circle $x^2 + y^2 = 9$.
- 15. Find the length of the chord cut off from the line 2x + 3y = 13 by the circle $\frac{x^2}{y^2} + y^2 = 26$
- 16. Find the coordinates of the points of intersection of the line x + 2y = 6 with the circle: $x^2 + y^2 2x 2y 39 = 0$
- 17. Find equations of the tangents to the circle $x^2 + y^2 = 2$ parallel to the x 2y + 1 = 0.
- 18. Find equations of the tangents to the circle $x^2 + y^2 = 2$ perpendicular to the line 3x + 2y = 6.
- 19. Find equation of the tangents drawn from (0,5) to $x^2 + y^2 = 16$.
- **20.** Find equation of the tangents drawn from (-1,2) to $x^2 + y^2 + 4x + 2y = 0$.
- 21. Find equation of the tangents drawn from (-7, -2) to $(x + 1)^2 + (y 2)^2 = 26$.
- 22. Find an equation of the parabola whose focus is F(-3.4) & directrix is 3x 4y + 5 = 0.
- 23. Find the focus, vertex and directrix of the parabola $x + 8 y^2 + 2y = 0$
- 24. Find the focus, vertex and directrix of the parabola $x^2 4x 8y + 4 = 0$
- **25.** Write an equation of the parabola with axis parallel to y-axis, the points (0,3), (3,4) and (4,11) lie on the graph.
- **26.** Find an equation of the parabola having its focus at the origin and directrix, parallel to the (i) x-axis (ii) y-axis.
- 27. Show that an equation of the parabola with focus at $(a \cos \alpha, a \sin \alpha)$ and directrix
 - $x \cos \alpha + y \sin \alpha + a = 0$ is $(x \sin \alpha y \cos \alpha)^2 = 4a(x \cos \alpha + y \sin \alpha)$
- **28.** Show that the ordinate at any point P of the parabola is a mean proportional between the length of the latus rectum and the abscissa of P.

- **29.** Show that the equation $9x^2 18x + 4y^2 + 8y 23 = 0$ represents an ellipse. Find its elements (Centre, Focus, Eccentricity, Covertices).
- **30.** Find an equation of the ellipse with foci $(\pm\sqrt{5},0)$ and passing through the point $(\frac{3}{2},\sqrt{3})$.
- **31.** Find an equation of the ellipse with Centre (2, 2), major axis parallel to *y*-axis and of length 8 units, minor axis parallel to *x*-axis and of length 6 units.
- **32.** Find an equation of the ellipse with Centre (0,0), major axis horizontal, the points (3, 1), (4,0) lie on the graph.
- 33. Find the Centre, foci, eccentricity, vertices and directrices of the ellipse

$$\frac{(2x-1)^2}{4} + \frac{(y+2)^2}{16} = 1$$

34. Find the Centre, foci, eccentricity, vertices and directrices of the ellipse

$$x^2 + 16x + 4y^2 - 16y + 76 = 0$$

- **35.** Prove that the lactus rectum of the ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$.
- 36. Find Centre, foci, eccentricity and vertices of hyperbola

$$4x^2 - 8x - y^2 - 2y - 1 = 0$$

37. Find the Centre, foci, eccentricity, vertices and equation of directrices of the hyperbola

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

38. Find the Centre, foci, eccentricity, vertices and equation of directrices of the hyperbola

$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$

39. Find the Centre, foci, eccentricity, vertices and equation of directrices of the hyperbola

$$\frac{y^2}{4} - x^2 = 1$$

40. Find the Centre, foci, eccentricity, vertices and equation of directrices of the hyperbola

$$\frac{(y+2)^2}{9} - \frac{(x-2)^2}{16} = 1$$

41. Find the Centre, foci, eccentricity, vertices and equation of directrices of the hyperbola

$$9x^2 - 12x - y^2 - 2y + 2 = 0$$

42. Find the Centre, foci, eccentricity, vertices and equation of directrices of the hyperbola

$$4y^2 + 12y - x^2 + 4x + 1 = 0$$

43. Find the Centre, foci, eccentricity, vertices and equation of directrices of the hyperbola $\frac{2}{3} + \frac{2}{3} = \frac{2}{3} \frac{2}{3} = \frac{2}{3} = \frac{2}{3} + \frac{2}{3} = \frac{2}{3} =$

$$9x^2 - y^2 - 36x - 6y + 18 = 0$$

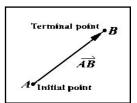
- **44.** Find an equation of tangent to the parabola $y^2 = -6x$ which is parallel to the line 2x + y + 1 = 0. Also find the point of tangency.
- **45.** Find the point of intersection of $\frac{x^2}{18} + \frac{y^2}{8} = 1$ and $\frac{x^2}{3} \frac{y^2}{3} = 1$

UNIT 7

DEFINITIONS + SUMMARY

SCALAR

A **scalar quantity**, or simply a **scalar**, is one that possesses only magnitude. It can be specified by a number along with unit.


frample: - Mass, time, density, temperature, length, volume, speed and work etc.

VECTOR

A vector quantity, or simply a vector, is one that possesses both magnitude and direction. **frample:** - Displacement, velocity, acceleration, weight, force, momentum, electric and magnetic fields etc.

GEOMETRICAL INTERPRETATION OF VECTOR

Geometrically, a vector is represented by a directed line segment \overrightarrow{AB} with A its initial point and B its terminal point. It is often found convenient to denote a vector by an arrow and is written either as \overrightarrow{AB} or as a boldface symbol like \boldsymbol{v} or in underlined form $\underline{\boldsymbol{v}}$.

MAGNITUDE OR LENGTH OF A VECTOR

The magnitude of a vector \overrightarrow{AB} or \underline{v} is its absolute value and is written as $|\overrightarrow{AB}|$ or $|\underline{v}|$ or simply AB or v.

If
$$\underline{v} = x\underline{i} + y\underline{j} + z\underline{k}$$
 then $|\underline{v}| = \sqrt{x^2 + y^2 + z^2}$

PROPERTIES OF MAGNITUDE OF A VECTOR

Let v be a vector in plane or in space and c be a real number, then

(i)
$$|\underline{v}| \ge 0$$
 and $|\underline{v}| = 0$ if and only if $\underline{v} = 0$

(ii)
$$|c\underline{v}| = |c||\underline{v}|$$

UNIT VECTOR

A vector whose magnitude is one is called *Unit Vector*. Unit vector of vector \underline{v} is written as \hat{v} (read as v hat) and is defined as $\hat{v} = \frac{v}{|v|}$.

ZERO OR NULL VECTOR

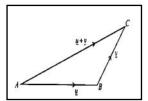
If terminal point B of a vector \overrightarrow{AB} coincides with its initial point A, then magnitude AB = 0 and $|\overrightarrow{AB}| = 0$, which is called zero or null vector.

NEGATIVE OF A VECTOR

Two vectors are said to be negative of each other if they have same magnitude but opposite direction. If $\overrightarrow{AB} = \underline{v}$ then $\overrightarrow{BA} = -\overrightarrow{AB} = -\underline{v}$ and $|\overrightarrow{BA}| = |-\overrightarrow{AB}|$

EQUAL VECTORS

Two vectors u and v are said to be equal if they have same magnitude and direction

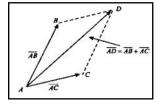

i.e.,
$$\underline{u} = \underline{v}$$

PARALLEL VECTORS

Two vectors \underline{u} and \underline{v} are parallel if and only if they are non-zero scalar multiple of each other. i.e., $\underline{u} = k\underline{v}$.

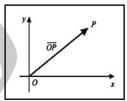
TRIANGLE LAW OF VECTOR ADDITION

If two vectors \underline{u} and \underline{v} are represented by the two sides AB and BC of a triangle such that the terminal point of \underline{u} coincide with the initial point of \underline{v} , then the third side AC of the triangle gives vector sum $\underline{u} + \underline{v}$, that is



$$\overline{AB} + \overline{BC} = \overline{AC} \Rightarrow u + v = \overline{AC}$$

PARALLELOGRAM LAW OF VECTOR ADDITION

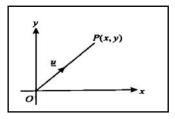

If two vectors \underline{u} and \underline{v} are represented by two adjacent sides AB and AC of a parallelogram as shown in the figure, then diagonal AD give the sum or resultant of AB and AC, that is

$$\overline{AD} = \overline{AB} + \overline{AC} = \underline{u} + \underline{v}$$

POSITION VECTOR

The vector, whose initial point is the origin O and whose terminal point is P, is called the position vector of the point P and is written as \overline{OP} .

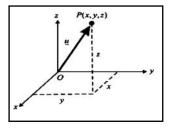
THE RATIO FORMULA


Let A and B be two points whose position vectors (p.v.) are \underline{a} and \underline{b} respectively. If a point P divides AB in the ratio p:q, then the position vector of P is given by

$$\underline{r} = \frac{q\underline{a} + p\underline{b}}{p + q}$$

VECTOR IN PLANE

The set of all ordered pairs [x, y] of real numbers, together with the rules of addition and scalar multiplication, is called the **set of vectors** in \mathbb{R}^2 .


For the vector $\underline{u} = [x, y] = x\underline{i} + y\underline{j}$, x and y are called components of \underline{u} . Where \underline{i} and \underline{j} are the unit vectors along x-axis and y-axis respectively.

VECTOR IN SPACE

The set of all ordered triples [x, y, z] of real numbers, together with the rules of addition and scalar multiplication, is called the **set of** vectors in \mathbb{R}^3 .

For the vector $\underline{u} = [x, y, z] = x\underline{i} + y\underline{j} + z\underline{k}$. x, y and z are called components of \underline{u} . Where $\underline{i}, \underline{j}$ and \underline{k} are the unit vectors along x-axis, y-axis and z-axis respectively.

PROPERTIES OF VECTORS

Vectors, both in the plane and in space, have the following properties: Let u, v and w be vectors in the plane or in space and let a, $b \in R$, then

(i)
$$\underline{u} + \underline{v} = \underline{v} + \underline{u}$$

(Commutative Property)

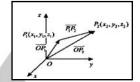
(ii)
$$(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$$

(Associative Property)

(iii)
$$u + (-1)u = u - u = 0$$

(Inverse for vector addition)

(iv)
$$a(\underline{v} + \underline{w}) = a\underline{v} + a\underline{w}$$

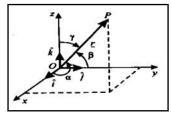

(Distributive Property)

(v)
$$a(bu) = (ab)u$$

(Scalar Multiplication)

DISTANCE BETWEEN TWO POINTS IN SPACE

If $\overline{OP_1}$ and $\overline{OP_2}$ are the position vectors of points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$, then



Distance between
$$P_1$$
 and $P_2 = |\overline{P_1 P_2}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

This is called **Distance Formula** between two points P_1 and P_2 in \mathbb{R}^3 .

DIRECTION ANGLES AND DIRECTION COSINES OF A VECTOR

Let $\underline{r} = \overline{OP} = x\underline{i} + y\underline{j} + z\underline{k}$ be a non-zero vector let α, β and γ denote the angles formed between \underline{r} and the unit coordinate vectors $\underline{i}, \underline{j}$ and \underline{k} respectively.

Such that

$$0 \le \alpha \le \pi$$
, $0 \le \beta \le \pi$, and $0 \le \gamma \le \pi$

- (i) The angles α , β and γ are called the *direction angles*.
- (ii) The numbers $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are called *direction cosines* of a vector \underline{r} .

If $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ then direction cosine of a vector \underline{r} are given as

$$\cos \alpha = \frac{x}{|\underline{r}|}, \cos \beta = \frac{y}{|\underline{r}|}, \cos \gamma = \frac{z}{|\underline{r}|}$$

Amportant Result

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

SCALAR PRODUCT OF TWO VECTORS

Definition 1:

Let two non-zero vectors u and v, in the plane or in space, have same initial point. The **dot** or Scalar product of u and v, written as u. v, is defined by

$$\underline{u}.\underline{v} = |\underline{u}||\underline{v}|\cos\theta$$
 or $\underline{u}.\underline{v} = uv\cos\theta$

 $\underline{u}.\,\underline{v} = |\underline{u}||\underline{v}|\cos\theta \quad \text{or} \quad \underline{u}.\,\underline{v} = uv\cos\theta$ Where θ is the angle between \underline{u} and v and $0 \le \theta \le \pi$.

Definition 2:

(i) If $\underline{u} = a_1 \underline{i} + b_1 j$ and $\underline{v} = a_2 \underline{i} + b_2 j$ are two non-zero vectors in plane. The dot product u.v is defined by

$$u.v = a_1a_2 + b_1b_2$$

 $\underline{u}.\,\underline{v}=a_1a_2+b_1b_2$ (ii) If $\underline{u}=a_1\underline{i}+b_1\underline{j}+c_1\underline{k}$ and $\underline{v}=a_2\underline{i}+b_2\underline{j}+c_2\underline{k}$ are two non-zero vectors in space. The dot product \underline{u} . \underline{v} is defined by

$$\underline{u}.\underline{v} = a_1 a_2 + b_1 b_2 + c_1 c_2$$

Note

The dot product is also referred to the scalar product or the inner product.

$$\underline{i}.\underline{i} = \underline{j}.\underline{j} = \underline{k}.\underline{k} = 1$$

$$\underline{i}.\underline{j} = \underline{j}.\underline{k} = \underline{k}.\underline{i} = 0$$

PERPENDICULAR (ORTHOGONAL) VECTORS

Two non-zero vectors \underline{u} and \underline{v} are said to be perpendicular if and only if \underline{u} . $\underline{v} = 0$.

$$\underline{u}.\underline{v} = |\underline{u}||\underline{v}|\cos\theta = 0 \implies \theta = \frac{\pi}{2}$$

PROPERTIES OF DOT PRODUCT

Let u, v and w be vectors and c be a real number, then

- (i) $\underline{u}.\underline{v} = 0 \Rightarrow \underline{u} = 0 \text{ or } \underline{v} = 0$ (ii) $\underline{u}.\underline{v} = \underline{v}.\underline{u}$

(Commutative Property)

(iii) $\underline{u} \cdot (\underline{v} + \underline{w}) = \underline{u} \cdot \underline{v} + \underline{u} \cdot \underline{w}$

(Distributive Property)

(iv)(cu).v = c(u.v)

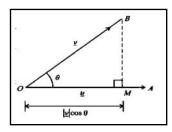
(c is scalar)

ANGLE BETWEEN TWO VECTORS

The angle between two vectors u and v is determined from the definition of dot product, that is

$$\underline{u} \cdot \underline{v} = |\underline{u}||\underline{v}|\cos\theta \Rightarrow \cos\theta = \frac{\underline{u} \cdot \underline{v}}{|\underline{u}||\underline{v}|}$$

Corollaries:


- (i) If $\theta = 0$ or π , vectors \underline{u} and v are collinear.
- If $\theta = \frac{\pi}{2}$, then $\underline{u} \cdot \underline{v} = 0$. Vectors \underline{u} and \underline{v} are perpendicular (orthogonal). (ii)

PROJECTION OF ONE VECTOR UPON ANOTHER VECTOR

Let $\overline{OA} = \underline{u}$ and $\overline{OB} = \underline{v}$ be two vectors such that θ is the angle between them and

$$0 \le \theta \le \pi$$

Draw a perpendicular \overline{BM} on \overline{OA} ($\overline{BM} \perp \overline{OA}$). Then \overline{OM} is called projection of v along u.

- Projection of \underline{v} along $\underline{u} = \frac{\underline{u}.\underline{v}}{|\underline{u}|}$
- Projection of \underline{u} along $\underline{v} = \frac{\underline{u} \cdot \underline{v}}{|v|}$

VECTOR PRODUCT OF TWO VECTORS

Definition 1:

Let \underline{u} and \underline{v} be two non-zero vectors. The Cross or Vector product of \underline{u} and \underline{v} , written as $\underline{u} \times \underline{v}$, is defined by

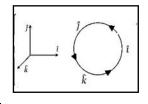
$$\underline{u} \times \underline{v} = |\underline{u}||\underline{v}| \sin \theta \,\,\hat{n}$$

Where θ is the angle between \underline{u} and \underline{v} such that $0 \le \theta \le \pi$. And \hat{n} is a unit vector perpendicular to the plane containing \underline{u} and \underline{v} .

Definition 2:

If $\underline{u} = a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}$ and $\underline{v} = a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k}$ are two non-zero vectors in space. The cross product $u \times v$ is defined by

$$\underline{u} \times \underline{v} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$


Note

The vector product is also referred to the **cross** product.

$$\underline{i} \times \underline{i} = \underline{j} \times \underline{j} = \underline{k} \times \underline{k} = 0$$

$$\underline{i} \times \underline{j} = \underline{k}, \quad \underline{j} \times \underline{k} = \underline{i}, \quad \underline{k} \times \underline{i} = \underline{j}$$

$$\underline{j} \times \underline{i} = -\underline{k}, \quad \underline{k} \times \underline{j} = -\underline{i}, \quad \underline{i} \times \underline{k} = -\underline{j}$$

PARALLEL VECTORS

Two non-zero **vectors** \underline{u} and \underline{v} are said to be parallel if and only if $\underline{u} \times \underline{v} = 0$.

$$\underline{u} \times \underline{v} = |\underline{u}||\underline{v}| \sin \theta \, \hat{n} = 0 \Rightarrow \theta = 0, \pi$$

Note

Zero Vector is both parallel and perpendicular to every vector.

PROPERTIES OF CROSS PRODUCT

Let \underline{u} , \underline{v} and \underline{w} be vectors and k be a real number, then

(i)
$$\underline{u} \times \underline{v} = 0 \Rightarrow \underline{u} = 0 \text{ or } \underline{v} = 0$$

(ii)
$$u \times v = -v \times u$$
 (Commutative Property)

(iii)
$$\underline{u} \times (\underline{v} + \underline{w}) = \underline{u} \times \underline{v} + \underline{u} \times \underline{w}$$
 (Distributive Property)
(iv) $\underline{u} \times (k\underline{v}) = (k\underline{u}) \times \underline{v} = k(\underline{u} \times \underline{v})$ (k is scalar)

$$(iv)\underline{u} \times (k\underline{v}) = (k\underline{u}) \times \underline{v} = k(\underline{u} \times \underline{v})$$
 (k is scalar)

(v)
$$\underline{u} \times \underline{u} = 0$$

AREA OF PARALLELOGRAM

Let \underline{u} and \underline{v} be two non-zero vectors and θ is the angle between \underline{u} and v. Then |u| and |v|represents the length of adjacent sides of a parallelogram, then

Area of Parallelogram = base
$$\times$$
 height

Area of Parallelogram =
$$|\underline{u} \times \underline{v}|$$

AREA OF TRIANGLE

Area of Triangle =
$$\frac{1}{2}$$
 (Area of Parallelogram)

Area of Triangle =
$$\frac{1}{2} |\underline{u} \times \underline{v}|$$

Where *u* and *v* are adjacent sides of a triangle.

SCALAR TRIPLE PRODUCT OF VECTORS

Let $\underline{u} = a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}$, $\underline{v} = a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k}$ and $\underline{w} = a_3 \underline{i} + b_3 \underline{j} + c_3 \underline{k}$ be three vectors.

The scalar triple product of vectors u, v and w is defined by

$$\underline{u}.(\underline{v}\times\underline{w}) \text{ or } \underline{v}.(\underline{w}\times\underline{u}) \text{ or } \underline{w}.(\underline{u}\times\underline{v})$$

$$\underline{u}.(\underline{v}\times\underline{w}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Note

The scalar triple product \underline{u} . $(\underline{v} \times \underline{w})$ is written as

$$\underline{\underline{u}.}(\underline{v}\times\underline{w}) = [\underline{u} \ \underline{v} \ \underline{w}]$$

If we take vectors in cyclic order then

$$\underline{u}.(\underline{v} \times \underline{w}) = \underline{v}.(\underline{w} \times \underline{u}) = \underline{w}.(\underline{u} \times \underline{v})$$

The dot and cross are interchangeable.

$$\underline{u}.(\underline{v}\times\underline{w})=\underline{u}\times(\underline{v}.\underline{w})$$

The value of product changes if the order is not cyclic

VOLUME OF PARALLELEPIPED

The scalar triple product $u.(v \times w)$ represents the volume of parallelepiped having u, v and w are conterminous edges.

Volume of Parallelepiped =
$$\underline{u} \cdot (\underline{v} \times \underline{w}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

VOLUME OF TETRAHEDRON

The volume of tetrahedron ABCD having \underline{u} , v and \underline{w} are conterminous edges is given by

Volume of Tetrahedron
$$=\frac{1}{6}(\underline{u}\times\underline{v}).\underline{w}=\frac{1}{6}[\underline{u}\quad\underline{v}\quad\underline{w}]$$

PROPERTIES OF SCALAR TRIPLE PRODUCT

- (i) If \underline{u} , \underline{v} and \underline{w} are coplanar then the scalar triple product of vectors is zero. i.e., the vectors \underline{u} , \underline{v} and \underline{w} are coplanar $\Leftrightarrow \underline{u}$. $(\underline{v} \times \underline{w}) = 0$
- (ii) If any two vectors of scalar triple product are equal, then its value is zero. i.e., $[\underline{u} \ \underline{u} \ \underline{w}] = [\underline{u} \ \underline{v} \ \underline{v}] = 0$

WORK DONE

If a constant force \underline{F} , applied to a body, acts at an angle θ to the direction of motion, then the work done by \underline{F} is defined to be the product of the component of \underline{F} in the direction of the displacement and the distance that the body moves.

Work done = (Force) (Dispalcement) =
$$\underline{F} \cdot \underline{d}$$

Work done = $\underline{F} \cdot \overline{AB}$

MOMENT OF FORCE

Let a force \underline{F} act at a point P then moment of \underline{F} about O is given by Moment of Force $= \overline{OP} \times \underline{F} = \underline{r} \times \underline{F}$

MCQ's

Choose the correct Option.

1	A quantity which has only magnitude is called:										
a	Vector	b	Norm	c	Scalar	d	None				
2	A quantity which has both magnitude and direction is called:										
a	Vector	b	Norm	c	Scalar	d	None				
3	Mass, time and work are example of										
a	Vector	b	Norm	С	Scalar	d	None				
4	Displacement, vel	ocit	y and acceleration a	re e	examples of						
a	Vector	b	Norm	c	Scalar	d	None				
5	Geometrically a v	ecto	r is represented by								
a	V	b	\widehat{v}	С	Directed line	d	None				
					segment						
6	The magnitude of	a ve	ector <u>v</u> is represente	d b	y						
a	<u>v</u>	b	v	С	\hat{v}	d	Both a and b				
7	The unit vector of	a v	ector \underline{v} is defined as	3							
a	<u>v</u>	b	v	С	$\frac{\underline{v}}{ \underline{v} }$	d	Both a and b				
8	If terminal point B	3 of	a vector \overrightarrow{AB} coincid	les v	with its initial point	<i>A</i> , v	which is called				
a	Zero vector	b	Null vector	С	Parallel vector	d	Both a and b				
9	Two vectors have	san	ne magnitude but op	pos	ite direction is calle	d					
a	Zero vector	b	Unit vector	c	Negative of each	d	Equal vector				
					other						
10	Two vectors have	san	ne magnitude and sa	me	direction is called						
a	Zero vector	b	Unit vector	c	Negative of each	d	Equal vector				
					other						
11	Two non-zero vectors \underline{u} and \underline{v} are said to be parallel if										

13 The set of all ordered pairs $[x, y]$ of real numbers, together with the rule and scalar multiplication is called a Vectors in \mathbb{R}^2 b Vectors in \mathbb{R}^3 c Vectors in \mathbb{R}^n d N 14 If $\underline{v} = x\underline{i} + y\underline{j} + z\underline{k}$ then magnitude of \underline{v} is define as a $\sqrt{x^2 + y^2}$ b $\sqrt{x^2 - y^2 - z^2}$ c $\sqrt{x^2 + y^2 + z^2}$ d N 15 If \underline{u} and \underline{v} be vectors then $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ is known as property.	Ione Ione Ione Ione									
The set of all ordered pairs $[x, y]$ of real numbers, together with the rule and scalar multiplication is called a Vectors in \mathbb{R}^2 b Vectors in \mathbb{R}^3 c Vectors in \mathbb{R}^n d N 14 If $\underline{v} = x\underline{i} + y\underline{j} + z\underline{k}$ then magnitude of \underline{v} is define as a $\sqrt{x^2 + y^2}$ b $\sqrt{x^2 - y^2 - z^2}$ c $\sqrt{x^2 + y^2 + z^2}$ d N 15 If \underline{u} and \underline{v} be vectors then $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ is known as property.	es of addition Ione Ione									
and scalar multiplication is called a Vectors in R ² b Vectors in R ³ c Vectors in R ⁿ d N 14 If $\underline{v} = x\underline{i} + y\underline{j} + z\underline{k}$ then magnitude of \underline{v} is define as a $\sqrt{x^2 + y^2}$ b $\sqrt{x^2 - y^2 - z^2}$ c $\sqrt{x^2 + y^2 + z^2}$ d N 15 If \underline{u} and \underline{v} be vectors then $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ is known as property.	Jone Jone									
a Vectors in R ² b Vectors in R ³ c Vectors in R ⁿ d N 14 If $\underline{v} = x\underline{i} + y\underline{j} + z\underline{k}$ then magnitude of \underline{v} is define as a $\sqrt{x^2 + y^2}$ b $\sqrt{x^2 - y^2 - z^2}$ c $\sqrt{x^2 + y^2 + z^2}$ d N 15 If \underline{u} and \underline{v} be vectors then $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ is known as property.	Ione									
14 If $\underline{v} = x\underline{i} + y\underline{j} + z\underline{k}$ then magnitude of \underline{v} is define as a $\sqrt{x^2 + y^2}$ b $\sqrt{x^2 - y^2 - z^2}$ c $\sqrt{x^2 + y^2 + z^2}$ d N 15 If \underline{u} and \underline{v} be vectors then $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ is known as property.	Ione									
a $\sqrt{x^2 + y^2}$ b $\sqrt{x^2 - y^2 - z^2}$ c $\sqrt{x^2 + y^2 + z^2}$ d N 15 If \underline{u} and \underline{v} be vectors then $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ is known as property.	Jone									
15 If \underline{u} and \underline{v} be vectors then $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ is known as property.	Jone									
a Associative h Commutative c Distributive d N										
a rissociative of commutative of bistroutive a ri										
16 If $\underline{u} \ \underline{v}$ and \underline{w} be vectors then $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$ is known a	as property.									
a Associative b Commutative c Distributive d N	lone									
17 <u>i</u> is called unit vector along	<u>i</u> is called unit vector along									
a x-axis b y-axis c z-axis d x	y-plane									
18 \underline{j} is called unit vector along										
a x-axis b y-axis c z-axis d x	y-plane									
19 \underline{k} is called unit vector along										
a x-axis b y-axis c z-axis d x	y-plane									
20 If α be direction angle then										
a $0^{\circ} \le \alpha \le 90^{\circ}$ b $0^{\circ} \le \alpha \le 180^{\circ}$ c $0^{\circ} \le \alpha < 90^{\circ}$ d N	lone									
21 If \underline{v} be a vector and c be a real number then $ c\underline{v} = \underline{\hspace{1cm}}$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \underline{v} $									
22 If α , β and γ are the direction angles then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 0$										
a 0 b -1 c 1 d 2										
23 Direction cosines of x-axis is										
a (1,0,0) b (0,1,0) c (0,0,1) d (1	1,1,1)									
24 Direction cosines of y-axis is										
a (1,0,0) b (0,1,0) c (0,0,1) d (1	1,1,1)									
25 Direction cosines of z-axis is										
a (1,0,0) b (0,1,0) c (0,0,1) d (1										

26	If $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ makes angles α , β and γ with x-axis, y-axis and z-axis then these											
	angles are called:											
a	Direction ratio	b	Direction cosine	c	Angles of vector	d	Direction angles					
27	If $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ makes angles α , β and γ with x-axis, y-axis and z-axis. Then the											
	numbers $\cos \alpha$, condition Direction ratio	4	and cos γ are called Direction cosine		Angles of vector	4	Direction and les					
a		b			_							
28	If \underline{u} and \underline{v} are two vectors and θ be angle between them, then their dot product is defined as $\underline{u} \cdot \underline{v} = \underline{\hspace{1cm}}$											
a	\underline{u} . \underline{v} cos θ	b	$uv\cos\theta$	c	$ \underline{u} \underline{v} \cos\theta$	d	Both b and c					
29	If $\underline{u} = a_1 \underline{i} + b_1 \underline{j}$ and	nd <u>v</u>	$\underline{i} = a_2 \underline{i} + b_2 \underline{j}$. Then	thei	r dot product <u>u</u> . <u>v</u> is	de	fined by					
a	$a_1a_2 + b_1b_2$	b	$a_1b_1 + a_2b_2$	c	$a_1b_2 + a_2b_1$	d	$a_1a_2 - b_1b_2$					
30	Dot product is also	ca	lled									
a	Scalar product	b	Inner product	c	Cross product	d	Both a and b					
31	<u>i. i</u> =											
a	0	b	-1	c	1	d	2					
32	<u>k</u> . <u>j</u> =											
a	0	b	-1	c	1	d	2					
33	Two non-zero vec	tors	\underline{u} and \underline{v} are perpen	dicı	ılar iff							
a	$\underline{u} \times \underline{v} = 0$	b	$\underline{u}.\underline{v}=0$	c	$\underline{u}.\underline{v}=1$	d	None					
34	If $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and	nd 3	$\underline{i} + \underline{j} + \alpha \underline{k}$ are perp	end	icular then value of	αi	s					
a	0	b	3	c	1	d	-1					
35	Projection of \underline{v} alo	ong	<u>u</u> is define as		1							
a	$\frac{\underline{u}.\underline{v}}{ \underline{u} }$	b	$\frac{\underline{u}.\underline{v}}{ \underline{v} }$	С	$\frac{\underline{u}.\underline{v}}{\underline{u}}$	d	None					
36	The Cross or Vect	or p	roduct of \underline{u} and \underline{v} ,	writ	ten as $\underline{u} \times \underline{v}$, is defi	ned	by					
a	$ \underline{u} \underline{v} \cos\theta$	b	uv cos θ	c	$ \underline{u} \underline{v} \sin\theta\hat{n}$	d	None					
37	$\underline{i} \times \underline{i} = \underline{j} \times \underline{j} = \underline{k}$	× <u>k</u>	=		<u> </u>		ı					
a	0	b	-1	c	1	d	<u>i</u>					
38	<u>i</u> × <u>j</u> =											
a	<u>i</u>	b	<u>j</u>	c	<u>k</u>	d	0					
39	<u>j</u> × <u>i</u> =				1							
a	<u>k</u>	b	<u>j</u>	c	- <u>k</u>	d	0					

40	If \underline{u} and \underline{v} be non-zero vectors then $\underline{u} \times \underline{v} = \underline{\hspace{1cm}}$										
a	<u>u</u>	b	$\underline{v} \times \underline{u}$	c	$-\underline{v} \times \underline{u}$	d	None				
41	If \underline{u} be non-zero vectors then $\underline{u} \times \underline{u} = \underline{\hspace{1cm}}$										
a	<u>u</u>	b	0	c	1	d	-1				
42	Let \underline{u} and \underline{v} be two non-zero vectors. $ \underline{u} $ and $ \underline{v} $ represents the length of adjacent sides of a parallelogram, then area of parallelogram is										
a	$\underline{u} \times \underline{v}$	b	$\frac{1}{2} \underline{u}\times\underline{v} $	С	$ \underline{u}.\underline{v} $	d	$ \underline{u} \times \underline{v} $				
43	Area of Triangle	=_	_								
a	$\underline{u} \times \underline{v}$	b	$\frac{1}{2} \underline{u}\times\underline{v} $	С	<u> u</u> . <u>v</u>	d	$ \underline{u} \times \underline{v} $				
44			ors then \underline{u} . ($\underline{v} \times \underline{w}$) is	equal						
a	$\underline{u} \times (\underline{v} \times \underline{w})$	b	$[\underline{u} \underline{v} \underline{w}]$	c	$\begin{bmatrix} \underline{u} & \underline{v} & \underline{v} \end{bmatrix}$	d	None				
45	Magnitude of vect	or <u>ı</u>	$\underline{\underline{v}} = \underline{\underline{i}} - \underline{\underline{j}} - \underline{\underline{k}} \text{ is:}$		N						
a	$\sqrt{1}$	b	$\sqrt{2}$	c	$\sqrt{3}$	d	$\sqrt{5}$				
46	If $\underline{u} = 2\underline{i} + 7\underline{j} + 9$	9 <u>k</u> t	hen $\underline{u} \times \underline{u} =$								
a	7 <u>j</u>	b	0	c	-1	d	$3\underline{i} + 5\underline{j} + 19\underline{k}$				
47	Volume of Paralle	elep	iped =								
a			$\underline{u} \times (\underline{v} \times \underline{w})$	c	$\frac{1}{6}[\underline{u} \underline{v} \underline{w}]$	d	$ \underline{u} \times \underline{v} $				
48	Volume of Tetrah										
a	$\underline{u}.(\underline{v}\times\underline{w})$	b	$\underline{u} \times (\underline{v} \times \underline{w})$	С	$\begin{bmatrix} \frac{1}{6} \begin{bmatrix} \underline{u} & \underline{v} & \underline{w} \end{bmatrix} \end{bmatrix}$	d	$ \underline{u} \times \underline{v} $				
49	Zero vector is both	ı pa	rallel and perpendic	ula							
a	Every vector	b	Only to unit vector	С	Position vector	d	Parallel vector				
50	If a constant force	<u>F</u> c	lisplaces the body A	to	B then work done is	5	<u> </u>				
a	$\overline{OP} \times \underline{F}$	b	$\underline{F}.\overline{AB}$	c	$\underline{F} \times \overline{AB}$	d	None				
51	Moment about O	of a	force <u>F</u> acting at a p	ooir	nt P is		<u> </u>				
a	$\overline{OP} \times \underline{F}$	b	<u>F</u> . AB	c	$\underline{F} \times \overline{AB}$	d	None				
52	If $\left \alpha \underline{i} + (\alpha + 1) \underline{j} \right $	+ 2	$ \underline{k} = 3 \text{ then } \alpha = _$		1		•				
a	1,2	b	-1, -2	c	-1,2	d	1, -2				

A vector perpendicular to $\underline{a} = 2\underline{i} - \underline{j} + \underline{k}$ and $\underline{b} = 4\underline{i} + 2\underline{j} - \underline{k}$ $-\underline{i} + 6\underline{j} + 8\underline{k}$ b $-\underline{i} - 6\underline{j} + 8\underline{k}$ c $2\underline{i} - \underline{j} + \underline{k}$ None 54 If P = (2,3) and Q = (6, -2) then $\overrightarrow{PQ} =$ 55 The position vector of a point P(-1,2,3) is: $\begin{array}{|c|c|}\hline -\underline{i}+2\underline{j}+3\underline{k}\end{array}$ $\underline{i} + 2\underline{j} + 3\underline{k}$ b $\underline{i} - 2\underline{j} - 3\underline{k}$ If $\underline{v} = -\frac{\sqrt{3}}{2}\underline{i} - \frac{1}{2}\underline{j}$, then $|\underline{v}| = \underline{}$: 1 c d 4 $\overline{2}$ 57 $\left|\cos\alpha\,\underline{i} + \sin\alpha\,j + 0\underline{k}\right| = ?$ a If $\underline{i} - 3\underline{j} + \underline{k}$ and $\lambda \underline{i} + 6\underline{j} - 2\underline{k}$ are parallel then $\lambda = ?$ 58 c 3 -3If P = (2,3) and Q = (6,-2) then $|\overrightarrow{PQ}| =$ b | √41 $\sqrt{40}$ c $\sqrt{42}$ $\sqrt{43}$ a Magnitude of the vector $2\underline{i} + 3j + 4\underline{k}$ is: b √29 29 c 28 $\sqrt{28}$ a Magnitude of the vector $2\underline{i} - 3j + \underline{k}$ is: $\sqrt{16}$ $\sqrt{14}$ $\sqrt{13}$ Length of the vector $-\underline{i} + 2j + 2\underline{k}$ is: 62 Which is not unit vector. 63 [1,0,0]b [0,1,0] [0,0,1][1,1,1]For a vector $\underline{v} = 2\underline{i} + 3\underline{j} - 6\underline{k}$, then $\cos \beta = \underline{}$: 64 65 Projection of $\underline{a} = \underline{i} - \underline{k}$ along $\underline{b} = \underline{j} + \underline{k}$ is: 1 d If the vectors $\underline{u} = 2\alpha \underline{i} + \underline{j} - \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 4\underline{k}$ are perpendicular then $\alpha = ?$

a	<u>1</u> <u>3</u>	b	$\frac{2}{3}$	c	$\frac{4}{3}$	d	3				
67	Projection of \underline{u} along \underline{v} is define as										
a	$\frac{\underline{u} \cdot \underline{v}}{ \underline{u} }$	b	$\frac{\underline{u}.\underline{v}}{ \underline{v} }$	c	$\frac{\underline{u}.\underline{v}}{\underline{v}}$	d	None				
68	Cosine of the angle between two non-zero vectors \underline{a} and \underline{b} is:										
a	$\frac{\underline{a}.\underline{b}}{ \underline{a} \underline{b} }$	b	$\frac{\underline{a} \cdot \underline{b}}{ \underline{b} }$	С	$\frac{ \underline{a} \underline{b} }{\underline{a}.\underline{b}}$	d	$\frac{\underline{a} \times \underline{b}}{ \underline{a} \underline{b} }$				
69	Sine of the angle between two non-zero vectors \underline{a} and \underline{b} is:										
a	$\frac{\underline{a}.\underline{b}}{ \underline{a} \underline{b} }$	b	$\frac{\underline{a} \cdot \underline{b}}{ \underline{b} }$	С	$\frac{ \underline{a} \underline{b} }{\underline{a}.\underline{b}}$	d	$\frac{\underline{a} \times \underline{b}}{ \underline{a} \underline{b} }$				
70	If two vectors $\underline{i} - \underline{j} + \alpha \underline{k}$ and $\underline{i} - 2\underline{j} - 3\underline{k}$ are perpendicular then value of α is										
a	-2	b	3	c	-1	d	1				
71	The angle between the vectors $2\underline{i} + 3\underline{j} + \underline{k}$ and $2\underline{i} - \underline{j} - \underline{k}$ is:										
a	30°	b	45°	c	60°	d	90°				
72	The angle between the vectors $\underline{i} + \underline{j}$ and $\underline{i} - \underline{j}$ is:										
a	0°	b	$\frac{\pi}{4}$	С	π	d	$\frac{\pi}{2}$				
73	If the vectors $\underline{u} = 2\underline{i} + 4\underline{j} - 7\underline{k}$ and $\underline{v} = 2\underline{i} + 6\underline{j} + x\underline{k}$ are perpendicular then $x = ?$										
a	-4	b	4	c	28	d	0				
74	The angle between	the	e vectors $4\underline{i} + 2\underline{j} -$	<u>k</u> aı	-i + j - 2k is						
a	30°	b	45°	c	60°	d	90°				
75	If the vectors $\underline{u} = \underline{i} + \alpha \underline{j} - \underline{k}$ and $\underline{v} = 2\underline{i} + \underline{j} - \underline{k}$ are perpendicular then $\alpha = ?$										
a	3	b	0	С	-3	d	1				
76	If the vectors $\underline{u} = 3\underline{i} - 2\underline{j} + \underline{k}$ and $\underline{v} = 2\underline{i} - \underline{j} + x\underline{k}$ are perpendicular then $x = ?$										
a	-8	b	5	c	-1	d	1				
77	Vector product of two vector is a:										
a	Scalar quantity	b	Unit vector	c	Vector quantity	d	Null vector				
78	Scalar product of t	wo	vector is a:								
a	Scalar quantity	b	Unit vector	c	Vector quantity	d	Null vector				
79	$\begin{bmatrix} \underline{k} & \underline{i} & \underline{j} \end{bmatrix} = \underline{\hspace{1cm}}$										
a	3	b	0	c	-1	d	1				

80	$2\underline{i} \times 2\underline{j}.\underline{k} = \underline{\hspace{1cm}}$										
a	2	b	4	c	-2	d	-4				
81	$2\underline{i} \times \underline{j}.\underline{k} = \underline{\hspace{1cm}}$										
a	2	b	0	c	-1	d	1				
82	$[\underline{i} \underline{i} \underline{k}] = \underline{i} \cdot \underline{i} \times \underline{k} = \underline{\qquad}$										
a	2	b	0	c	-1	d	1				
83	If \underline{u} , \underline{v} and \underline{w} are coplanar then \underline{u} . $(\underline{v} \times \underline{w}) = \underline{}$										
a	2	b	0	c	-1	d	1				
84	$\underline{i} \cdot \underline{k} \times \underline{j} = \underline{\hspace{1cm}}$										
a	2	b	0	С	-1	d	1				
85	$\begin{bmatrix} \underline{i} & \underline{j} & \underline{k} \end{bmatrix} = \underline{i} \cdot \underline{j} \times \underline{k} = \underline{\qquad}$										
a	2	b	0	c	-1	d	1				
86	If $\underline{F} = 4\underline{i} + 3\underline{j} + 3\underline{j}$	5 <u>k</u> a	and $\underline{d} = -\underline{i} + 3\underline{j} + 3\underline{j}$	5 <u>k</u> ,	then work done is:						
a	30 units	b	45 units	c	53 units	d	47 units				
87	Length of the vector $2\underline{i} - \underline{j} - 2\underline{k}$ is:										
a	2	b	3	С	4	d	5				
88	The non-zero vect	ors	<u>a</u> and <u>b</u> are parallel	iff	$\underline{a} \times \underline{b} =$						
a	2	b	0	c	-1	d	1				
89	If \underline{a} and \underline{b} are two non-zero vectors then angle between \underline{a} and $\underline{a} \times \underline{b}$ is always:										
a	30°	b	45°	c	60°	d	90°				
90	If any two vectors	of	scalar triple product	are	equal, then its valu	e is:	:				
a	0	b	180	c	-1	d	1				
91	$\underline{i} \times \underline{k} = \underline{\hspace{1cm}}$										
a	<u>i</u>	b	<u>j</u>	c	- <u>j</u>	d	1				
92	Area of a triangle whose adjacent sides are $3\underline{i} + 4\underline{j}$ and $12\underline{i} + 9\underline{j}$ is:										
a	<u>45</u>	b	<u>55</u>	c	21	d	<u>75</u>				
02	$\frac{\overline{2}}{2}$	-1	2		2		2				
93	$\begin{bmatrix} 2\underline{k} & \underline{j} & \underline{i} \end{bmatrix}$ is equal to:										
a	-2	b	0	С	2	d	1				
94	$(\underline{i} \times \underline{k}) \times \underline{j} = \underline{}$	-									

a	0	b	1	С	<u>j</u>	d	- <u>j</u>		
95	$2\underline{j}.(2\underline{k}\times\underline{i}) = \underline{}$								
a	4	b	1	c	2	d	-4		

MCQ's Answers Key

1	2	3	4	5	6	7	8	9	10
c	a	c	a	c	d	c	d	c	d
11	12	13	14	15	16	17	18	19	20
d	a	a	c	ь	a	a	ь	c	b
21	22	23	24	25	26	27	28	29	30
d	c	a	b	c	d	b	d	a	d
31	32	33	34	35	36	37	38	39	40
c	a	b	d	a	c	a	c	c	c
41	42	43	44	45	46	47	48	49	50
b	d	b	b	c	b	a	c	a	b
51	52	53	54	55	56	57	58	59	60
a	d	a	c	c	a	a	a	b	b
61	62	63	64	65	66	67	68	69	70
c	a	d	a	a	c	b	a	d	d
71	72	73	74	75	76	77	78	79	80
d	d	ь	d	c	a	c	a	d	b
81	82	83	84	85	86	87	88	89	90
a	b	b	c	d	a	b	b	d	a
91	92	93	94	95	96	97	98	99	100
c	c	a	a	a					

IMPORTANT SHORT QUESTIONS

- 1. Define Unit Vector.
- 2. Define Equal Vectors.
- 3. Define Position Vector.
- **4.** Find the unit vector in the same direction as the vector $\underline{v} = [3, -4]$.
- **5.** Find a unit vector in the direction of vector $\underline{v} = 2\underline{i} + 6\underline{j}$
- **6.** Find a unit vector in the direction of vector $\underline{v} = [-2, 4]$.
- 7. Write the vector \overrightarrow{PQ} in the form $x\underline{i} + y\underline{j}$. Where P(2,3), Q(6,-2)
- **8.** Write the vector \overrightarrow{PQ} in the form $x\underline{i} + y\underline{j}$. Where P(0,5), Q(-1,-6)
- **9.** Find the magnitude of the vector $\underline{u} = \underline{i} + j$.
- **10.** Find the magnitude of the vector u = [3, -4].
- 11. If $\underline{u} = 2\underline{i} 7\underline{j}$, $\underline{v} = \underline{i} 6\underline{j}$ and $\underline{w} = -\underline{i} + \underline{j}$. Find $2\underline{u} 3\underline{v} + 4\underline{w}$.
- 12. If $\underline{u} = 2\underline{i} 7\underline{j}$, $\underline{v} = \underline{i} 6\underline{j}$ and $\underline{w} = -\underline{i} + \underline{j}$. Find $\frac{1}{2}\underline{u} + \frac{1}{2}\underline{v} + \frac{1}{2}\underline{w}$.
- 13. Find the sum of the vectors \overrightarrow{AB} and \overrightarrow{CD} , given the four points A(1,-1), B(2,0), C(-1,3) and D(-2,2).
- **14.** Find the vector from the point A to the origin where $\overrightarrow{AB} = 4\underline{i} 2\underline{j}$ and B is the point (-2, 5).
- **15.** Find a unit vector in the direction of vector $\underline{v} = 2\underline{i} j$.
- **16.** Find a unit vector in the direction of vector $\underline{v} = \frac{1}{2}\underline{i} + \frac{\sqrt{3}}{2}\underline{j}$
- 17. Find a unit vector in the direction of vector $\underline{v} = -\frac{\sqrt{3}}{2}\underline{i} \frac{1}{2}\underline{j}$.
- **18.** If *O* is the origin and $\overrightarrow{OP} = \overrightarrow{AB}$ find the point *P* when *A* and *B* are (-3,7) and (1,0) respectively.
- **19.** If $\overrightarrow{AB} = \overrightarrow{CD}$ find the coordinates of the point A when points B, C, D are (1,2), (-2,5), (4,11) respectively.
- **20.** Find the position vectors of the point of division of the line segments joining the following pair of points, in the given ratio: Point C with position vector $2\underline{i} \underline{3j}$ and point D with position vector $3\underline{i} + 2j$ in the ratio 4:3.
- **21.** If $\underline{u} = 2\underline{i} + 3\underline{j} + \underline{k}$, $\underline{v} = 4\underline{i} + 6\underline{j} + 2\underline{k}$. Then find $\underline{u} + 2\underline{v}$ and $|\underline{u} + 2\underline{v}|$.
- 22. Define Direction Angles.
- **23.** Define Direction Cosines of a Vector. Find direction cosines of $\vec{v} = x\underline{i} + y\underline{j} + \underline{k}$.
- **24.** Prove that $cos^2\alpha + cos^2\beta + cos^2\gamma = 1$.
- **25.** Let A = (2, 5), B = (-1, 1) and C = (2, -6). Find (i) \overrightarrow{AB} (ii) $2\overrightarrow{CB} 2\overrightarrow{CA}$
- **26.** If $\underline{u} = \underline{i} + 2\underline{j} \underline{k}$, $\underline{v} = \underline{3}\underline{i} 2\underline{j} + 2\underline{k}$ and $\underline{w} = 5\underline{i} \underline{j} + 3\underline{k}$. Then find (i) |u + 2v| (ii) |v 3w| (iii) |3v + w|
- **27.** Find magnitude and direction cosines of $\underline{v} = 2\underline{i} + 3\underline{j} + 4\underline{k}$.
- **28.** Find magnitude and direction cosines of $\underline{v} = \underline{i} \underline{j} \underline{k}$.

- **29.** Find magnitude and direction cosines of $\underline{v} = 4\underline{i} 5j$.
- **30.** Find α , so that $\left|\alpha \underline{i} + (\alpha + 1)j + 2\underline{k}\right| = 3$.
- **31.** Find a unit vector in the direction of vector $\underline{v} = \underline{i} + 2j \underline{k}$.
- **32.** Find a vector whose magnitude is 4 and is parallel to $2\underline{i} 3j + 6\underline{k}$.
- **33.** Find a vector whose magnitude is 2 and is parallel to $-\underline{i} + j + \underline{k}$.
- **34.** Find the constant α , so that the vectors $\underline{v} = \underline{i} 3\underline{j} + 4\underline{k}$ and $\underline{w} = \alpha\underline{i} + 9\underline{j} 12\underline{k}$ are parallel.
- **35.** Find a vector of length 5 in the direction opposite that of $\underline{v} = \underline{i} 2j + 3\underline{k}$.
- **36.** Find a and b, so that the vectors $3\underline{i} j + 4\underline{k}$ and $a\underline{i} + bj 2\underline{k}$ are parallel.
- **37.** Find the direction cosines of $\underline{v} = 3\underline{i} j + 2\underline{k}$.
- **38.** Find the direction cosines of $\underline{v} = 6\underline{i} 2j + \underline{k}$.
- **39.** Find the direction cosines of \overrightarrow{PQ} , where P = (2,1,5) and Q = (1,3,1).
- **40.** Is 45°, 45°, 60° can be the direction angles of a single vector.
- 41. Define Scalar Product of two vectors.
- 42. Define Perpendicular (Orthogonal) Vectors.
- **43.** Write properties of Dot Product.
- **44.** Find the angle between the vectors $\underline{u} = 2\underline{i} \underline{j} + \underline{k}$ and $\underline{v} = -\underline{i} + \underline{j}$.
- **45.** Find a scalar α so that the vectors $2\underline{i} + \alpha j + 5\underline{k}$ and $3\underline{i} + j + \alpha \underline{k}$ are perpendicular.
- **46.** Find cosine of the angle between $\underline{u} = 3\underline{i} + j \underline{k}$ and $\underline{v} = 2\underline{i} j + \underline{k}$.
- **47.** Find cosine of the angle between $\underline{u} = \underline{i} 3j + 4\underline{k}$ and $\underline{v} = 4\underline{i} j + 3\underline{k}$.
- **48.** Find cosine of the angle between $\underline{u} = [-3,5]$ and $\underline{v} = [6,-2]$.
- **49.** Find cosine of the angle between $\underline{u} = [2, -3, 1]$ and $\underline{v} = [2, 4, 1]$.
- **50.** Calculate the projection of \underline{a} along \underline{b} and projection of \underline{b} along \underline{a} when

$$\underline{a} = \underline{i} - \underline{k}$$
, $\underline{b} = j + \underline{k}$

51. Calculate the projection of \underline{a} along \underline{b} and projection of \underline{b} along \underline{a} when

$$\underline{a} = 3\underline{i} + \underline{j} - \underline{k}$$
, $\underline{b} = -2\underline{i} - \underline{j} + \underline{k}$

- **52.** Find a scalar α so that the vectors $\underline{u} = 2\alpha \underline{i} + \underline{j} \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 4\underline{k}$ are perpendicular.
- **53.** Find a scalar α so that the vectors $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 3\underline{k}$ are perpendicular.
- **54.** If \underline{v} is a vector for which \underline{v} . $\underline{i} = 0$, \underline{v} . $\underline{j} = 0$, \underline{v} . $\underline{k} = 0$, find \underline{v} .
- **55.** Show that the vectors $3\underline{i} 2j + \underline{k}$, $\underline{i} 3j + 5\underline{k}$ and $2\underline{i} + j 4\underline{k}$ from a right angle.
- **56.** Show that the set of points P = (1,3,2), Q(4,1,4) and R = (6,5,5) from a right triangle.
- **57.** Define Cross Product of two vectors.
- **58.** Write properties of Cross Product.
- **59.** Find a vector perpendicular to each of the vectors $\underline{a} = 2\underline{i} \underline{j} + \underline{k}$ and $\underline{b} = 4\underline{i} + 2\underline{j} \underline{k}$.
- **60.** Find area of the parallelogram whose vertices are P(0, 0, 0), Q(-1, 2, 4), R(2, -1, 4) and S(1, 1, 8).
- **61.** Compute the cross product $\underline{a} \times \underline{b}$ and $\underline{b} \times \underline{a}$. If $\underline{a} = 2\underline{i} + \underline{j} \underline{k}$, $\underline{b} = \underline{i} \underline{j} + \underline{k}$.

- **62.** Compute the cross product $\underline{a} \times \underline{b}$ and $\underline{b} \times \underline{a}$. If $\underline{a} = \underline{i} + j$, $\underline{b} = \underline{i} j$.
- **63.** Compute the cross product $\underline{a} \times \underline{b}$ and $\underline{b} \times \underline{a}$. If $\underline{a} = 3\underline{i} 2\underline{j} + \underline{k}$, $\underline{b} = \underline{i} + \underline{j}$.
- **64.** Compute the cross product $\underline{a} \times \underline{b}$ and $\underline{b} \times \underline{a}$. If $\underline{a} = -4\underline{i} + j 2\underline{k}$, $\underline{b} = 2\underline{i} + j + \underline{k}$.
- **65.** Find a unit vector perpendicular to the plane containing \underline{a} and \underline{b} . If $\underline{a} = \underline{i} + j$, $\underline{b} = \underline{i} j$.
- **66.** Find a unit vector perpendicular to the plane containing a and b.

If
$$\underline{a} = -\underline{i} - j - \underline{k}$$
, $\underline{b} = 2\underline{i} - 3j + 4\underline{k}$.

67. Find a unit vector perpendicular to the plane containing \underline{a} and \underline{b} .

If
$$\underline{a} = 2\underline{i} - 2j + 4\underline{k}$$
, $\underline{b} = -\underline{i} + j - 2\underline{k}$.

- **68.** Find area of the triangle PQR with vertices P(0,0,0), Q(2,3,2), R(-1,1,4).
- **69.** Find area of parallelogram whose vertices are A(0,0,0), B(1,2,3), C(2,-1,1), D(3,1,4)
- 70. Find area of parallelogram whose vertices are

$$A(1,2,-1), B(4,2,-3), C(6,-5,2), D(9,-5,0)$$

71. Find area of parallelogram whose vertices are

$$A(-1,1,1), B(-1,2,2), C(-3,4,-5), D(-3,5,-4)$$

72. Which vectors, if any, are perpendicular or parallel

$$\underline{u} = 5\underline{i} - \underline{j} + \underline{k}, \quad \underline{v} = \underline{j} - 5\underline{k}, \quad \underline{w} = -15\underline{i} + 3\underline{j} - 3\underline{k}$$

- 73. Prove that $\underline{a} \times (\underline{b} + \underline{c}) + \underline{b} \times (\underline{c} + \underline{a}) + \underline{c} \times (\underline{a} + \underline{b}) = 0$.
- 74. If $\underline{a} + \underline{b} + \underline{c} = 0$, then prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$.
- 75. If $\underline{a} \times \underline{b} = 0$ and $\underline{a} \cdot \underline{b} = 0$, what conclusion can be drawn from \underline{a} or \underline{b} ?
- 76. Define Scalar Triple Product.
- 77. Write formula to find volume of parallelepiped and tetrahedron.
- 78. Find volume of the parallelepiped determined by

$$\underline{u} = \underline{i} + 2\underline{j} - \underline{k}, \quad \underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}, \quad \underline{w} = \underline{i} - 7\underline{j} - 4\underline{k}$$

- **79.** Find the value of α so that the vectors $\underline{\alpha}\underline{i} + \underline{j}$, $\underline{i} + \underline{j} + 3\underline{k}$ and $2\underline{i} + \underline{j} 2\underline{k}$ are coplanar.
- **80.** Find the work done by a constant force $F = 2\underline{i} + 4\underline{j}$, if its points of application to a body moves it from A(1, 1) to B(4, 6).
- **81.** Find volume of the parallelepiped with the given vectors

$$\underline{u} = 3\underline{i} + 2\underline{k}, \qquad \underline{v} = \underline{i} + 2\underline{j} + \underline{k}, \qquad \underline{w} = -\underline{j} + 4\underline{k}$$
82. Find volume of the parallelepiped with the given vectors

$$\underline{u} = \underline{i} - 4\underline{j} - \underline{k}, \quad \underline{v} = \underline{i} - \underline{j} - 2\underline{k}, \quad \underline{w} = 2\underline{i} - 3\underline{j} + \underline{k}$$

83. Find volume of the parallelepiped with the given vectors

$$\underline{u} = \underline{i} - 2\underline{j} + 3\underline{k}, \quad \underline{v} = 2\underline{i} - \underline{j} - \underline{k}, \qquad \underline{w} = \underline{j} + \underline{k}$$

- **84.** Prove that the vectors $\underline{i} 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{j} 4\underline{k}$ and $\underline{i} 3\underline{j} + 5\underline{k}$ are coplanar.
- **85.** Find the constant α so that the vectors $\underline{i} j + \underline{k}$, $\underline{i} 2j 3\underline{k}$ and $3\underline{i} \alpha j + 5\underline{k}$ are
- **86.** Find the constant α so that the vectors $\underline{i} 2\alpha j \underline{k}$, $\underline{i} j + 2\underline{k}$ and $\alpha \underline{i} 2j + \underline{k}$ are coplanar.
- **87.** Find the value of $2\underline{i} \times 2\underline{j}$. \underline{k} .
- **88.** Find the value of 3j. $\underline{k} \times \underline{i}$.
- **89.** Find the value of $[\underline{k} \quad \underline{i} \quad j]$.

- **90.** Find the value of $[\underline{i} \quad \underline{i} \quad \underline{k}]$.
- **91.** Prove that $\underline{u} \cdot (\underline{v} \times \underline{w}) + \underline{v} \cdot (\underline{w} \times \underline{u}) + \underline{w} \cdot (\underline{u} \times \underline{v}) = 3\underline{u} \cdot (\underline{v} \times \underline{w}).$
- **92.** Find the work done, if the point at which the constant force $\underline{F} = 4\underline{i} + 3\underline{j} + 5\underline{k}$ is applied to an object, moves from $P_1(3,1,-2)$ to $P_2(2,4,6)$.
- 93. A force $\underline{F} = 3\underline{i} + 2\underline{j} 4\underline{k}$ is applied at the point (1, -1, 2). Find the moment of the force about the point (2, -1, 3).
- **94.** A force $\underline{F} = 4\underline{i} 3\underline{k}$, passes through the point A(2, -2, 5). Find the moment of F about the point B(1, -3, 1).
- **95.** Given a force $\underline{F} = 2\underline{i} + \underline{j} 3\underline{k}$ acting at a point A(1, -2, 1). Find the moment of F about the point B(2, 0, -2).
- **96.** A force $\underline{F} = 7\underline{i} + 4\underline{j} 3\underline{k}$ is applied at P(1, -2, 3). Find its moment about the point Q(2,1,1).

IMPORTANT LONG QUESTIONS

- 1. Use vectors, to prove that the diagonals of a parallelogram bisect each other.
- 2. Prove that the line segment joining the mid points of two sides of a triangle is parallel to the third side and half as long.
- 3. Prove that the line segments joining the mid points of the sides of a quadrilateral taken in order form a parallelogram.
- **4.** The position vectors of the points A, B, C and D are $2\underline{i} j + \underline{k}$, $3\underline{i} + j$, $2\underline{i} + 4j 2\underline{k}$ and $-\underline{i} - 2\underline{j} + \underline{k}$ respectively. Show that \overrightarrow{AB} is parallel to \overrightarrow{CD} .
- 5. Using Vectors, prove that in any triangle ABC, $a^2 = b^2 + c^2 2bc \cos A$.
- **6.** Using Vectors, prove that in any triangle ABC, $\alpha = b \cos C + c \cos B$.
- 7. Using Vectors, prove that $\cos(\alpha \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
- 8. Show that midpoint of hypotenuse a right triangle is equidistant from its vertices.
- 9. Prove that perpendicular bisectors of the sides of a triangle are concurrent.
- 10. Prove that the altitudes of a triangle are concurrent.
- 11. Prove that the angle in a semi-circle is a right angle.
- 12. Using Vectors, prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$
- 13. Using Vectors, prove that in any triangle ABC, $c = a \cos B + b \cos A$.
- **14.** Using Vectors, prove that in any triangle ABC, $b^2 = c^2 + a^2 2ca \cos B$.
- 15. Using Vectors, prove that in any triangle ABC, $c^2 = a^2 + b^2 2ab \cos C$.
- 16. If $\underline{a} = 4\underline{i} + 3\underline{j} + \underline{k}$ and $\underline{b} = 2\underline{i} \underline{j} + 2\underline{k}$. Find a unit vector perpendicular to both \underline{a} and b. Also find the sine of the angle between the vectors a and b.
- 17. Using Vectors, prove that $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$
- 18. Using Vectors, in any triangle ABC, prove that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

- 19. Find the area of the triangle with vertices A(1,-1,1), B(2,1,-1) and C(-1,1,2). Also find a unit vector perpendicular to the plane ABC.
- 20. Find a unit vector perpendicular to the plane containing a and b. Also find the sine of the angle between the vectors \underline{a} and \underline{b} . If $\underline{a} = 2\underline{i} - 6\underline{j} - 3\underline{k}$ and $\underline{b} = 4\underline{i} + 3\underline{j} - \underline{k}$.

21. Which vectors, if any, are perpendicular or parallel
$$\underline{u} = \underline{i} + 2\underline{j} - \underline{k}, \underline{v} = -\underline{i} + \underline{j} + \underline{k}, \underline{w} = -\frac{\pi}{2}\underline{i} - \pi\underline{j} + \frac{\pi}{2}\underline{k}$$

- **22.** Using Vectors, prove that $\sin (\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$
- **23.** Prove that four points A(-3,5,-4), B(-1,1,1), C(-1,2,2) and D(-3,4,-5) are coplanar.
- **24.** Find the volume of the tetrahedron whose vertices are A(2, 1, 8), B(3, 2, 9), C(2, 1, 4) and D(3,3,0).
- **25.** Prove that the points whose position vectors are $A\left(-6\underline{i} + 3j + 2\underline{k}\right)$, $B\left(3\underline{i} 2j + 4\underline{k}\right)$, $C\left(5\underline{i} + 7\underline{j} + 3\underline{k}\right)$, $D(-13\underline{i} + 17\underline{j} - \underline{k})$ are coplanar.
- **26.** Find volume of the Tetrahedron with the vertices (0, 1, 2), (3, 2, 1), (1, 2, 1) and (5, 5, 6).
- **27.** Find volume of the Tetrahedron with the vertices (2, 1, 8), (3, 2, 9), (2, 1, 4) and (3, 3, 10).

- **28.** A particle, acted by constant forces $4\underline{i} + \underline{j} 3\underline{k}$ and $3\underline{i} \underline{j} \underline{k}$, is displaced from A(1,2,3) to B(5,4,1). Find the work done.
- **29.** A force of magnitude 6 units acting parallel to $2\underline{i} 2\underline{j} + \underline{k}$ displaces, the point of application from (1, 2, 3) to (5, 3, 7). Find the work done.

EAT SLEP MATH REPEAT