Available at MathCity.org

32

# Unit 3

# **Sets and Functions**

# **EXERCISE 3.1**

- 1. Write the following sets in set builder notation:
  - (i) {1, 4, 9, 16, 25, 36, ..., 484} (ii) {2, 4, 8, 16, 32, 64, ..., 150}
  - (iii)  $\{0, \pm 1, \pm 2, \dots, \pm 1000\}$  (iv)  $\{6, 12, 18, \dots, 120\}$
  - (v)  $\{100, 102, 104, ..., 400\}$  (vi)  $\{1, 3, 9, 27, 81, ...\}$
  - (vii) {1, 2, 4, 5, 10, 20, 25, 50, 100} (viii) {5, 10, 15, ..., 100}
  - (ix) The set of all integers between -100 and 1000

#### **Solution**

- (i)  $\{x | x = n^2, n \in \mathbb{N} \land 1 \le x < 500\}$  (ii)  $\{x | x = 2^n, n \in \mathbb{N} \land 2 \le x \le 150\}$
- (iii)  $\{x | x \in Z \land 0 \le x \le 1000\}$  (iv)  $\{x | x = 6n, n \in N \land 1 \le n \le 20\}$
- (v)  $\{x | x = 100 + 2n, n \in W \land 1 \le n \le 150\}$  (vi)  $\{x | x = 3^n, n \in W\}$ (vii)  $\{x | x \text{ is a divisor of } 100\}$  (viii)  $\{x | x = 5n, n \in N \land 1 \le n \le 20\}$
- (ix)  $\{x | x \in Z \land -100 < x < 1000\}$ 
  - 2. Write each of the following sets in tabular forms:
    - (i)  $\{x \mid x \text{ is a multiple of } 3 \land x \leq 35\}$  (ii)  $\{x \mid x \in R \land 2x + 1 = 0\}$
    - (iii)  $\{x | x \in P \land x < 12\}$  (iv)  $\{x | x \text{ is a divisor of } 128\}$
    - (v)  $\{x | x = 2^n, n \in N \land n < 8\}$  (vi)  $\{x | x \in N \land x + 4 = 0\}$
    - (vii)  $\{x \mid x \in N \land x = x\}$  (viii)  $\{x \mid x \in Z \land 3x + 1 = 0\}$

- (i)  $\{3, 6, 9, ..., 35\}$  (ii)  $\left\{-\frac{1}{2}\right\}$
- (iii) {2, 3, 5, 7, 11} (iv) {1, 2, 4, 8, 16, 32, 64, 128} (v) {2,4,8,16,32,64,128} (vi) {} (vii) {1, 2, 3, 4, 5,...} (viii) {}

| 3. Write two proper subsets of each of the following sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         |                                                                                   |                                                  |                                     | ts:                                                                      |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\{a, b, c\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                   |                                                  | _                                   |                                                                          | Z               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (v)                                                                                                                                     | i) <i>R</i>                                                                       | (v)                                              | ii) { <i>x</i>                      | $x \in Q \land 0$                                                        | $0 < x \le 2\}$ |
| ii. Thii. To iv. The vi. The vi. The vii. The viii. | tion the Proper the Pr | subsets of {     subsets of     r subsets of     subsets of     subsets of     subsets of     r subsets of | a, b, c} are { $0,1$ } are { $N = \{1,2,3\}$ $Z = \{, -1\}$ Q are $\{1\}$ , R are $\{1\}$ , f $\{x   x \in Q\}$ et which has  two elems | e {a}, {b}. 0 }, { 1 } 3, } are 3, -2, -1; {2}. {2}. ∧ 0 < x ≤ has no presence be | . {1}, {2}. 0,1,2,3, 2} are {1 oper subsetween { | } are {1} }, {2}. set? If so {a, b} | $\{2\}$ , $\{2\}$ .  The equation is a second second and $\{\{a,b\}\}$ . | that set.       |
| 6.<br>Solu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (i)<br>(iv)<br>(vi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is the number { } { 0, 1, 2, 3, } { {a, b}, {b}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ii)<br>4, 5, 6, 7}                                                                                                                     | {0, 1}                                                                            | (iii) {                                          | 1, 2, 3, 4,                         | 5, 6, 7}                                                                 | wing sets?      |
| (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (ii) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (iii) 128                                                                                                                               | 3                                                                                 | (iv) 256                                         | (                                   | v) 4                                                                     | (vi) 8          |
| 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Write down the power set of each of the following sets:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         |                                                                                   |                                                  |                                     |                                                                          |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | {9, 11}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (ii)                                                                                                                                    | {+, -, ×,                                                                         | ÷} (iii)                                         | $\{\phi\}$                          | (iv)                                                                     | $a, \{b,c\}$    |
| <b>ii.</b> Τ! { φ, · {+, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne Power<br>he Power<br>{+}, {-},<br>-,÷}, {+,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | set of {9,11<br>set of {+, -<br>{×}, {÷}, {+<br>×,÷}, {-,×,<br>r set of {φ}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -,×,÷} is<br>-, -}, {+ ×<br>÷}, {+, -,>                                                                                                 | }, {+,÷}, {<br><,÷}}.                                                             |                                                  | ÷},{×,÷}                            | , {+, –,×                                                                | },              |

**iv.** The Power set of  $\{a, \{b, c\}\}\$  is  $\{\phi, \{a\}, \{\{b, c\}\}, \{a, \{b, c\}\}\}\$ .

## Visit us @ YouTube "Learning with Usman Hamid"

# Exercise 3.2

- 1. Consider the universal set  $U=\{x: x \text{ is multiple of 2 and } 0 < x \le 30\},\$   $A = \{x: x \text{ is a multiple of 6}\} \text{ and } B = \{x: x \text{ is a multiple of 8}\}$ 
  - (i) List all elements of sets A and B in tabular form
  - (ii) Find  $A \cap B$
- (iii) Draw a Venn diagram

#### **Solution**

- (i)  $A = \{6, 12, 18, 24, 30\}, B = \{8, 16, 24\}$
- (ii)  $A \cap B = \{24\}$



- 2. Let,  $U = \{x : x \text{ is an integer and } 0 < x \le 150\}$ ,  $G = \{x : x = 2^m \text{ for integer } m \text{ and } 0 \le m \le 7\}$  and  $H = \{x : x \text{ is a square}\}$ 
  - (i) List all elements of sets G and H in tabular form
  - (ii) Find  $G \cup H$
- (iii) Find  $G \cap H$

#### **Solution**

- (i)  $G = \{1, 2, 4, 8, 16, 32, 64, 128\},$  $H = \{1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144\}$
- (ii)  $G \cup H = \{1, 2, 4, 8, 9, 16, 25, 32, 36, 49, 64, 81, 100, 121, 128, 144\}$
- (iii)  $G \cap H = \{1, 4, 16, 64\}$ 
  - 3. Consider the sets  $P = \{x : x \text{ is a prime number and } 0 < x \le 20\}$  and  $Q = \{x : x \text{ is a divisor of } 210 \text{ and } 0 < x \le 20\}$ 
    - (i) Find  $P \cap Q$
- (ii) Find  $P \cup Q$

- (i)  $P \cap Q = \{2,3,5,7,9,11,13,17,19,20\} \cap \{1,2,3,5,6,7,10,14,15\} = \{2,3,5,7\}$
- (ii)  $P \cup Q = \{2,3,5,7,9,11,13,17,19,20\} \cup \{1,2,3,5,6,7,10,14,15\}$  $P \cup Q = \{1,2,3,5,6,7,10,11,13,14,15,17,19,20\}$

4. Verify the commutative properties of union and intersection for the following pairs of sets:

(i) 
$$A = \{1, 2, 3, 4, 5\}, B = \{4, 6, 8, 10\}$$
 (ii)  $N, Z$ 

(iii) 
$$A = \{ x \mid x \in R \land x \ge 0 \}, B = R.$$

#### **Solution**

**4.**(i) 
$$A \cup B = B \cup A$$
 also  $A \cap B = B \cap A$ 

$$A \cup B = \{1,2,3,4,5\} \cup \{4,6,8,10\} = \{1,2,3,4,5,6,8,10\}$$

$$B \cup A = \{4,6,8,10\} \cup \{1,2,3,4,5\} = \{1,2,3,4,5,6,8,10\}$$

Hence  $A \cup B = B \cup A$ 

$$A \cap B = \{1,2,3,4,5\} \cap \{4,6,8,10\} = \{4\}$$

$$B \cap A = \{4,6,8,10\} \cap \{1,2,3,4,5\} = \{4\}$$

Hence  $A \cap B = B \cap A$ 

**4.(ii)** 
$$N \cup Z = Z \cup N$$
 also  $N \cap Z = Z \cap N$ 

$$N \cup Z = \{1,2,3,...\} \cup \{0,\pm 1,\pm 2,\pm 3,...\} = \{0,\pm 1,\pm 2,\pm 3,...\}$$

$$Z \cup N = \{0, \pm 1, \pm 2, \pm 3, \dots\} \cup \{1, 2, 3, \dots\} = \{0, \pm 1, \pm 2, \pm 3, \dots\}$$

Hence  $N \cup Z = Z \cup N$ 

$$N \cap Z = \{1,2,3,...\} \cap \{0,\pm 1,\pm 2,\pm 3,...\} = \{1,2,3,...\}$$

$$Z \cap N = \{0, \pm 1, \pm 2, \pm 3, \dots\} \cap \{1, 2, 3, \dots\} = \{1, 2, 3, \dots\}$$

Hence  $N \cap Z = Z \cap N$ 

**4.**(iii) 
$$A \cup B = B \cup A$$
 also  $A \cap B = B \cap A$ 

$$A \cup B = \{0,1,2,3,4,5\} \cup R = R$$

$$B \cup A = R \cup \{0,1,2,3,4,5\} = R$$

Hence  $A \cup B = B \cup A$ 

$$A \cap B = \{0,1,2,3,4,5\} \cap R = \{0,1,2,3,4,5\}$$

$$B \cap A = R \cap \{0,1,2,3,4,5\} = \{0,1,2,3,4,5\}$$

Hence  $A \cap B = B \cap A$ 

5. Let 
$$U = \{a, b, c, d, e, f, g, h, i, j\}$$
  
 $A = \{a, b, c, d, g, h\}, B = \{c, d, e, f, j\},$ 

Verify De Morgan's Laws for these sets. Draw Venn diagram

#### **Solution**

We have to verify

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

```
(\mathbf{A} \cup \mathbf{B})' = \overline{\mathbf{A}' \cap \mathbf{B}'}
                                                                               (\mathbf{A} \cap \mathbf{B})' = \mathbf{A}' \cup \mathbf{B}'
A = \{a, b, c, d, g, h\}
                                                                               A = \{a, b, c, d, g, h\}
B = \{c, d, e, f, j\}
                                                                               B = \{c, d, e, f, j\}
U = \{a, b, c, d, e, f, g, h, i, j\}
                                                                               U = \{a, b, c, d, e, f, g, h, i, j\}
A' = U - A
                                                                               A' = U - A
= \{a, b, c, d, e, f, g, h, i, j\} - \{a, b, c, d, g, h\}
                                                                               = \{a, b, c, d, e, f, g, h, i, j\} - \{a, b, c, d, g, h\}
= \{e, f, i, j\}
                                                                               = \{e, f, i, j\}
B' = U - B
                                                                               B' = U - B
= \{a, b, c, d, e, f, g, h, i, j\} - \{c, d, e, f, j\}
                                                                               = \{a, b, c, d, e, f, g, h, i, j\} - \{c, d, e, f, j\}
= \{a, b, g, h, i\}
                                                                               = \{a, b, g, h, i\}
A \cup B = \{a, b, c, d, e, f, g, h, j\}
                                                                               A \cap B = \{c, d\}
(A \cup B)' = U - (A \cup B)
                                                                               (A \cap B)' = U - (A \cap B)
= \{a, b, c, d, e, f, g, h, i, j\} - \{a, b, c, d, e, f, g, h, j\}
                                                                               = \{a, b, c, d, e, f, g, h, i, j\} - \{c, d\}
                                                                               = \{a, b, e, f, g, h, i, j\}
A' \cap B' = \{e, f, i, j\} \cap \{a, b, g, h, i\}
                                                                               A' \cup B' = \{e, f, i, j\} \cup \{a, b, g, h, i\}
                                                                               = \{a, b, e, f, g, h, i, j\}
= \{i\}
```

- If  $U = \{1, 2, 3, ..., 20\}$  and  $A = \{1, 3, 5, ..., 19\}$ , verify the following: 6.
  - $A \cup A' = U$  (ii) (i)
- - $A \cap U = A$  (iii)  $A \cap A' = \phi$

$$U = \{1,2,3,...,20\}$$
 and  $A = \{1,3,5,...,19\}$   
 $A' = U - A = \{1,2,3,...,20\} - \{1,3,5,...,19\} = \{2,4,6,...,20\}$   
(i)  $A \cup A' = \{1,3,5,...,19\} \cup \{2,4,6,...,20\} = \{1,2,3,...,20\} = U$   
(ii)  $A \cap U = \{1,3,5,...,19\} \cap \{1,2,3,...,20\} = \{1,3,5,...,19\} = A$   
(iii)  $A \cap A' = \{1,3,5,...,19\} \cap \{2,4,6,...,20\} = \varphi$ 

In a class of 55 students, 34 like to play cricket and 30 like to play hockey. 7. Also each student likes to play at least one of the two games. How many students like to play both games?

$$n(C) = 34$$
;  $n(H) = 30$ ;  $n(U) = 55$ ;  $n(C \cup H) = 55$   
 $n(C \cup H) = n(C) + n(H) - n(C \cap H)$   
 $55 = 34 + 30 - n(C \cap H) \Rightarrow 55 = 64 - n(C \cap H)$   
 $\Rightarrow n(C \cap H) = 64 - 55$   
 $\Rightarrow n(C \cap H) = 9$ .

8. In a group of 500 employees, 250 can speak Urdu, 150 can speak English, 50 can speak Punjabi, 40 can speak Urdu and English, 30 can speak both English and Punjabi, and 10 can speak Urdu and Punjabi. How many can speak all three languages?

#### **Solution**

$$\begin{split} n(U \cup E \cup P) &= 500 \; ; \; n(U) = 250 \; ; \; n(E) = 150 \; ; \; n(P) = 50 \\ n(U \cap E) &= 40 \; ; \; n(E \cap P) = 30 \; ; \; n(U \cap P) = 10 \\ n(U \cap E \cap P) &= ??? \\ n(U \cup E \cup P) &= n(U) + n(E) + n(P) - n(U \cap E) - n(E \cap P) - n(U \cap P) + n(U \cap E \cap P) \\ 500 &= 250 + 150 + 50 - 40 - 30 - 10 + n(U \cap E \cap P) \\ 500 &= 450 - 80 + n(U \cap E \cap P) \\ 500 &= 370 + n(U \cap E \cap P) \\ n(U \cap E \cap P) &= 130 \end{split}$$

9. In sports events, 19 people wear blue shirts, 15 wear green shirts, 3 wear blue and green shirts, 4 wear a cap and blue shirts, and 2 wear a cap and green shirts. The total number of people with either a blue or green shirt or cap is 25. How many people are wearing caps?

#### **Solution**

$$0 = n(C) + n(B \cap G \cap C)$$

As number of element in any set can be zero or positive, which concludes that Sum of number of elements of two sets can only be zero, if both sets are empty.

Hence,  $\mathbf{n}(\mathbf{C}) = \mathbf{0}$  or number of players wearing only caps are zero.

19

Blue

Shirts

15

Green

Shirts

25

10. In a training session,17 participants have laptops, 11 have tablets, 9 have laptops and tablets, 6 have laptops and books, and 4 have both tablets and books. Eight participants have all three items. The total number of participants with laptops, tablets, or books is 35. How many participants have books?

#### **Solution**

$$\begin{array}{l} n\;(L)=17\;\;;\;n\;(T)=11\;\;;\;n\;(L\cap T)=9\;\;;\;n\;(L\cap B)=6\;\;;\;n\;(T\cap B)=4\\ \\ n\;(L\cap T\cap B)=8\;\;;\;n(L\cup T\cup B)=35\\ \\ n(L\cup T\cup B)=n(L)+n(T)+n(B)-n(L\cap T)-n(L\cap B)-n(T\cap B)+n(L\cap T\cap B)\\ \\ 35=17+11+n(B)-9-6-4+8\\ \\ 35=17+n(B) \end{array}$$

#### n(B) = 18

- 11. A shopping mall has150 employees labelled 1 to 150, representing the Universal set U. The employees fall into the following categories:
  - Set A: 40 employees with a salary range of 30k-45k, labelled from 50 to 89.
  - Set B: 50 employees with a salary range of 50k-80k, labelled from 101 to 150.
  - Set C: 60 employees with a salary range of 100k-150k, labelled from 1 to 49 and 90 to 100.

(a) Find 
$$(A' \cup B') \cap C$$
 (a) Find  $n \{ A \cap (B^c \cap C^c) \}$ 

$$U = \{1,2,3,...,150\} ; n(U) = 150$$

$$A = \{50,51,52,...,89\} ; n(A) = 40$$

$$B = \{101,102,...,150\} ; n(B) = 50$$

$$C = \{1,2,3,...,49,90,91,...,100\} ; n(C) = 60$$

$$A' = U - A = \{1,2,3,...,150\} - \{50,51,52,...,89\} = \{1,2,3,...,49,90,91,...,100\}$$

$$B' = U - B = \{1,2,3,...,150\} - \{101,102,...,150\} = \{1,2,3,...,100\}$$

$$C' = U - C = \{1,2,3,...,150\} - \{1,2,3,...,49,90,91,...,100\} = \{50,51,52,...,89\}$$
(i) (A'  $\cup$  B')  $\cap$  C = ???

A'  $\cup$  B' =  $\{1,2,3,...,49,90,91,...,100\} \cup \{1,2,3,...,100\} = \{1,2,3,...,100\}$ 
(A'  $\cup$  B')  $\cap$  C =  $\{1,2,3,...,49,90,91,...,100\}$ 

(ii) 
$$n\{A \cap (B' \cap C')\} = ??$$
  
 $B' \cap C' = \{1,2,3,...,100\} \cap \{50,51,52,...,89\} = \{50,51,52,...,89\}$   
 $A \cap (B' \cap C') = \{50,51,52,...,89\} \cap \{50,51,52,...,89\} = \{50,51,52,...,89\}$   
 $n\{A \cap (B' \cap C')\} = 40$ 

- 12. In a secondary school with 125 students participate in at least one of the following sports: cricket, football, or hockey.
  - 60 students play cricket.
  - 70 students play football.
  - 40 students play hockey.
  - 25 students play both cricket and football.
  - 15 students play both football and hockey.
  - 10 students play both cricket and hockey.
    - (a) How many students play all three sports?
    - (b) Draw a Venn diagram showing the distribution of sports participation in all the games.

$$\begin{split} &n(C \cup F \cup H) = 125 \; ; \; n(C) = 60 \; ; \; n(F) = 70 \; ; \; n(H) = 40 \\ &n(C \cap F) = 25 \; ; \; n(F \cap H) = 15 \; ; \; n(C \cap H) = 10 \; ; n(C \cap F \cap H) = ??? \\ &n(C \cup F \cup H) = n(C) + n(F) + n(H) - n(C \cap F) - n(F \cap H) - n(C \cap H) + n(C \cap F \cap H) \\ &125 = 60 + 70 + 40 - 25 - 15 - 10 + n(C \cap F \cap H) \\ &n(C \cap F \cap H) = 125 - 60 - 70 - 40 + 25 + 15 + 10 \\ &n(C \cap F \cap H) = 5 \end{split}$$



- 13. A survey was conducted in which 130 people were asked about their favourite foods. The survey results showed the following information:
  - 40 people said they liked nihari
  - 65 people said they liked biryani
  - 50 people said they liked korma
  - 20 people said they liked nihari and biryani
  - 35 people said they liked biryani and korma
  - 27 people said they liked nihari and korma
  - 12 people said they liked all three foods nihari, biryani, and korma
    - (a) At least how many people like nihari, biryani or korma?
    - (b) How many people did not like nihari, biryani, or korma?
    - (c) How many people like only one of the following foods: nihari, biryani, or korma?
    - (d) Draw a Venn diagram.

$$n(N \cup B \cup K) = ????$$
;  $n(N) = 40$ ;  $n(B) = 65$ ;  $n(K) = 50$   
 $n(N \cap B) = 20$ ;  $n(B \cap K) = 35$ ;  $n(N \cap K) = 27$ ;  $n(N \cap B \cap K) = 12$ 

### a) At least how many people like Nihari, Biryani or Korma:

$$n(N \cup B \cup K) = n(N) + n(B) + n(K) - n(N \cap B) - n(B \cap K) - n(N \cap K) + n(N \cap B \cap K)$$

$$n(N \cup B \cup K) = 40 + 65 + 50 - 20 - 35 - 27 + 12$$

$$n(N \cup B \cup K) = 85$$

# b) How many people did not like Nihari, Biryani or Korma:

Total people = 130

People who like nihari, biryani, or korma = 85

People who did not like nihari, biryani, or korma = 130 - 85 = 45

# c) How many people like only one of the Nihari, Biryani or Korma:

People who like only nihari = 
$$n(N) - n(N \cap B) - n(N \cap K) + n(N \cap B \cap K)$$
  
=  $40 - 20 - 27 + 12 = 5$ 

People who like only biryani = 
$$n(B) - n(N \cap B) - n(B \cap K) + n(N \cap B \cap K)$$
  
=  $65 - 20 - 35 + 12 = 22$ 

People who like only korma = 
$$n(K) - n(N \cap K) - n(B \cap K) + n(N \cap B \cap K)$$
  
=  $50 - 27 - 35 + 12 = 0$ 

Total people who like only one food = 5 + 22 + 0 = 27



# EXERCISE 3.3

- 1. For  $A = \{1, 2, 3, 4\}$ , find the following relations in A. State the domain and range of each relation.

  - (i)  $\{(x, y) \mid y = x\}$  (ii)  $\{(x, y) \mid y + x = 5\}$
  - (iii)  $\{(x, y) \mid x + y < 5\}$  (iv)  $\{(x, y) \mid x + y > 5\}$

#### **Solution**

 $A = \{1,2,3,4\}$ 

 $A \times A = \{1,2,3,4\} \times \{1,2,3,4\} =$ 

 $\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\}$ 

(i)  $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$ Domain of (i) =  $\{1, 2, 3, 4\}$ Range of (i) =  $\{1, 2, 3, 4\}$ 



(ii)



 $\{(1, 4), (2, 3), (3, 2), (4, 1)\}$ 

Domain of (ii) =  $\{1, 2, 3, 4\}$ 

Range of (ii) =  $\{1, 2, 3, 4\}$ 

(iii)  $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)\}$ Domain of (iii) =  $\{1, 2, 3\}$ Range of (iii) =  $\{1, 2, 3\}$ 



(iv)



 $\{(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)\}$ 

Domain of (iv) =  $\{2, 3, 4\}$ 

Range of (iv) =  $\{2, 3, 4\}$ 

2. Which of the following diagrams represent functions and of which type?



#### **Solution**

Fig (1) does not represent a function. Fig (2) represents a function, which is a bijective function.

Fig (3) represents a function, which is a bijective function.

Fig (4) represents a function, which is an into function.

3. If 
$$g(x) = 3x + 2$$
 and  $h(x) = x^2 + 1$ , then find:

(i) 
$$g(0)$$

(iii) 
$$g\left(\frac{2}{3}\right)$$

(iv) 
$$h(1)$$

(vi) 
$$h\left(-\frac{1}{2}\right)$$

**i.** 
$$g(x) = 3x + 2 \Rightarrow g(0) = 3(0) + 2 \Rightarrow g(0) = 2$$

ii. 
$$g(x) = 3x + 2 \Rightarrow g(-3) = 3(-3) + 2 \Rightarrow g(-3) = -9 + 2 \Rightarrow g(-3) = -7$$

iii. 
$$g(x) = 3x + 2 \Rightarrow g(\frac{2}{3}) = 3(\frac{2}{3}) + 2 \Rightarrow g(\frac{2}{3}) = 2 + 2 \Rightarrow g(\frac{2}{3}) = 4$$

iv. 
$$h(x) = x^2 + 1 \Rightarrow h(1) = (1)^2 + 1 \Rightarrow h(1) = 1 + 1 \Rightarrow h(1) = 2$$

$$\mathbf{v} \cdot \mathbf{h}(\mathbf{x}) = \mathbf{x}^2 + 1 \Rightarrow \mathbf{h}(-4) = (-4)^2 + 1 \Rightarrow \mathbf{h}(-4) = 16 + 1 \Rightarrow \mathbf{h}(-4) = 17$$

**vi.** 
$$h(x) = x^2 + 1 \Rightarrow h\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^2 + 1 \Rightarrow h\left(-\frac{1}{2}\right) = \frac{1}{4} + 1 \Rightarrow h\left(-\frac{1}{2}\right) = \frac{5}{4}$$

4. Given that f(x) = ax + b + 1, where a and b are constant numbers. If f(3) = 8 and f(6) = 14, then find the values of a and b.

#### **Solution**

$$f(x) = ax + b + 1$$
  
 $f(3) = a(3) + b + 1$   $f(6) = a(6) + b + 1$   
 $8 = 3a + b + 1$   $14 = 6a + b + 1$   
 $8 - 1 = 3a + b$   $14 - 1 = 6a + b$   
 $3a + b = 7$  .....(i)  $6a + b = 13$  .....(ii)

2(i) - (ii) (ii) - (i)  

$$6a + 2b = 14$$
  $6a + b = 13$   $-3a \pm b = -7$   
 $b = 1$   $a = 2$ 

5. Given that g(x) = ax + b + 5, where a and b are constant numbers. If g(-1) = 0 and g(2) = 10, find the values of a and b.

$$g(x) = ax + b + 5$$
  
 $g(-1) = a(-1) + b + 5$  |  $g(2) = a(2) + b + 5$   
 $0 = -a + b + 5$  |  $10 = 2a + b + 5$   
 $0 - 5 = -a + b$  |  $10 - 5 = 2a + b$   
 $-a + b = -5$  .....(ii) |  $2a + b = 5$  .....(ii)

(i) - (ii) 
$$2(i) + (ii)$$

$$-a + b = -5$$

$$-2a \pm b = -5$$

$$a = \frac{10}{3}$$

$$2(i) + (ii)$$

$$-2a + 2b = -10$$

$$2a + b = 5$$

$$b = -\frac{5}{3}$$

6. Consider the function defined by f(x) = 5x + 1. If f(x) = 32, find the x value.

#### **Solution**

$$f(x) = 5x + 1$$
  
 $f(x) = 32$   
 $5x + 1 = 32$   
 $5x = 32 - 1$   
 $x = \frac{31}{5}$  6 is wrong answer in book  $f(x) = 5x + 1$   
 $f(x) = 5x + 1$   
 $f(x) = 31$   
 $5x + 1 = 31$   
 $5x = 31 - 1$   
 $x = \frac{30}{5} = 6$  according to book

7. Consider the function  $f(x) = cx^2 + d$ , where c and d are constant numbers. If f(1) = 6 and f(-2) = 10, then find the values of c and d.

$$f(x) = cx^{2} + d$$
  
 $f(1) = c(1)^{2} + d$   $f(-2) = c(-2)^{2} + d$   
 $c + d = 6$  .....(i)  $c + d = 10$  .....(ii)

(i) - (ii)  

$$c + d = 6$$
  
 $-4c \pm d = -10$   
 $c = \frac{4}{3}$   
4(i) - (ii)  
 $4c + 4d = 24$   
 $-4c \pm d = -10$   
 $d = \frac{14}{3}$ 

# **REVIEW EXERCISE 3**

- 1. Four options are given against each statement. Encircle the correct option.
  - The set builder form of the set  $\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots\right\}$  is: (i)

(a) 
$$\left\{x \mid x = \frac{1}{n}, n \in W\right\}$$
 (b)  $\left\{x \mid x = \frac{1}{2n+1}, n \in W\right\}$ 

(c)  $\left\{ x \mid x = \frac{1}{n+1}, n \in W \right\}$  (d)  $\left\{ x \mid x = 2n+1, n \in W \right\}$ 

- If  $A = \{ \}$ , then P(A) is: (ii) **(6**) {{}} (a) { } (b) {1}
- If  $U = \{1, 2, 3, 4, 5\}$ ,  $A = \{1, 2, 3\}$  and  $B = \{3, 4, 5\}$ , then  $U (A \cap B)$  is: (iii) (c) {1, 2, 4, 5} (b) {2, 3} (c) {1, 3, 4, 5} (d) {1, 2, 3}
- If A and B are overlapping sets, then n(A B) is equal to (iv) (c)  $A \cap B$  (d)  $n(A) - n(A \cap B)$ (a) n(A)(b) n(B)
- If  $A \subseteq B$  and  $B A \neq \emptyset$ , then n(B A) is equal to (v) (A) n(B) - n(A)(c) n(A)(a) 0 (b) n(B)
- If  $n(A \cup B) = 50$ , n(A) = 30 and n(B) = 35, then  $n(A \cap B) = :$ (vi) 106) 15 (c) 9 (a) 23 (d) 40
- If  $A = \{1, 2, 3, 4\}$  and  $B = \{x, y, z\}$ , then cartesian product of A and B
- (a) 13 (c) 10 (d) 6
- (viii) If  $f(x) = x^2 3x + 2$ , then the value of f(a + 1) is equal to: (a) a+1 (b)  $a^2+1$  (c)  $a^2+2a+1$  (d)  $a^2-a$
- Given that f(x) = 3x+1, if f(x)=28, then the value of x is: (ix) (a) 9 (b) 27 (c) 3 (d) 18
- Let  $A = \{1, 2, 3\}$  and  $B = \{a, b\}$  two non-empty sets and  $f: A \to B$  be a (x) a function defined as  $f = \{(1, a), (2, b), (3, b)\}$ , then which of the following statement is true?
  - (a) f is injective (b) f is surjective (c) f is bijective (d) f is into only

2. Write each of the following sets in tabular forms:

(i) 
$$\{x | x = 2n, n \in N\}$$

(ii) 
$$\{x | x = 2m+1, m \in N\}$$

(iii) 
$$\{x | x = 11n, n \in W \land n < 11\}$$

$$\{x | x = 11n, n \in W \land n < 11\}$$
 (iv)  $\{x | x \in E \land 4 < x < 6\}$ 

(v) 
$$\{x | x \in O \land 5 \le x < 7\}$$
 (vi)  $\{x | x \in Q \land x^2 = 2\}$ 

(vi) 
$$\{x | x \in Q \land x^2 = 2\}$$

(vii) 
$$\{x | x \in Q \land x = -x\}$$

(viii) 
$$\{x \mid x \in R \land x \notin Q'\}$$

#### **Solution**

- (i) {2, 4, 6, 8, 10, ...} (ii) {3, 5, 7, 9, 11, ...}

(iii) {0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110}

- $(iv) \phi (v) \phi (vi) \phi$

$$(vii) \{0\}$$
  $(viii)$   $Q$ 

Let  $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{2, 4, 6, 8, 10\}, B = \{1, 2, 3, 4, 5\}$ and  $C = \{1, 3, 5, 7, 9\}$ 

List the members of each of the following sets:

- (i) A'
- (ii)
- (iii)  $A \cup B$ 
  - (iv) A - B

- (v)
- $A \cap C$  (vi)  $A' \cup C'$  (vii)  $A' \cup C$
- (viii) U'

i. 
$$A' = U - A = \{1,2,3,4,5,6,7,8,9,10\} - \{2,4,6,8,10\} = \{1,3,5,7,9\}$$

ii. 
$$B' = U - B = \{1,2,3,4,5,6,7,8,9,10\} - \{1,2,3,4,5\} = \{6,7,8,9,10\}$$

**iii.** 
$$A \cup B = \{2,4,6,8,10\} \cup \{1,2,3,4,5\} = \{1,2,3,4,5,6,7,8,9,10\}$$

**iv.** 
$$A - B = \{2,4,6,8,10\} - \{1,2,3,4,5\} = \{6,8,10\}$$

**v.** A 
$$\cap$$
 C = {2,4,6,8,10}  $\cap$  {1,3,5,7,9} =  $\varphi$ 

**vi.** A' 
$$\cup$$
 C' = {1,3,5,7,9}  $\cup$  {2,4,6,8,10} = {1,2,3,4,5,6,7,8,9,10}

**vii.** A' 
$$\cup$$
 C = {1,3,5,7,9}  $\cup$  {1,3,5,7,9} = {1,3,5,7,9}

**viii.** 
$$U' = U - U = \{1,2,3,4,5,6,7,8,9,10\} - \{1,2,3,4,5,6,7,8,9,10\} = \varphi$$

Using the Venn diagrams, if necessary, find the single sets equal to the 4. following:

- (i)
- A'
- (ii)
- $A \cap U$
- (iii)  $A \cup U$
- (iv)  $A \cup \phi$  (v)
- $\phi \cap \phi$

**Solution** 

 $\overline{(\mathbf{i}) A' = U - A}$ 

 $\overline{(ii)} \, \overline{A \cap U = A}$ 



(iii)  $A \cup U = U$ 



(iv)  $A \cup \varphi = A$ 



(v)  $\varphi \cap \varphi = \varphi$ 

It has no Venn diagram.

- Use Venn diagrams to verify the following:
  - $A B = A \cup B'$ (i)

(ii)  $(A-B)' \cap B = B$ 

**Solution** 

(i)  $A - B = A \cup B'$ 





not equals to

# (i) $A - B = A \cap B'$





(ii) 
$$(A - B)' \cap B = B$$

$$A - B$$

$$(A-B)'$$



Then  $(A - B)' \cap B = B$  is



- 6. Verify the properties for the sets A, B and C given below:
  - (i) Associativity of Union (ii) Asso
    - (ii) Associativity of intersection.
  - (iii) Distributivity of Union over intersection.
  - (iv) Distributivity of intersection over union.

(a) 
$$A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6, 7, 8\}, C = \{5, 6, 7, 9, 10\}$$

(b) 
$$A = \emptyset$$
,  $B = \{0\}$ ,  $C = \{0, 1, 2\}$ 

(c) 
$$A = N$$
,  $B = Z$ ,  $C = Q$ 

(a) 
$$A = \{1,2,3,4\}$$
;  $B = \{3,4,5,6,7,8\}$ ;  $C = \{5,6,7,9,10\}$ 

i. Associativity of Union: 
$$A \cup (B \cup C) = (A \cup B) \cup C$$

L. H. 
$$S = A \cup (B \cup C) = \{1,2,3,4\} \cup [\{3,4,5,6,7,8\} \cup \{5,6,7,9,10\}]$$

$$A \cup (B \cup C) = \{1,2,3,4\} \cup \{3,4,5,6,7,8,9,10\} = \{1,2,3,4,5,6,7,8,9,10\}$$

R. H. S = 
$$(A \cup B) \cup C = [\{1,2,3,4\} \cup \{3,4,5,6,7,8\}] \cup \{5,6,7,9,10\}$$

$$(A \cup B) \cup C = \{1,2,3,4,5,6,7,8\} \cup \{5,6,7,9,10\} = \{1,2,3,4,5,6,7,8,9,10\}$$

Hence  $A \cup (B \cup C) = (A \cup B) \cup C$ 

ii. Associativity of Intersection: 
$$A \cap (B \cap C) = (A \cap B) \cap C$$

L. H. 
$$S = A \cap (B \cap C) = \{1,2,3,4\} \cap [\{3,4,5,6,7,8\} \cap \{5,6,7,9,10\}]$$

$$A \cap (B \cap C) = \{1,2,3,4\} \cap \{5,6,7\} = \{\}$$

R. H. S = 
$$(A \cap B) \cap C = [\{1,2,3,4\} \cap \{3,4,5,6,7,8\}] \cap \{5,6,7,9,10\}$$

$$(A \cap B) \cap C = \{3,4\} \cap \{5,6,7,9,10\} = \{ \}$$

Hence  $A \cap (B \cap C) = (A \cap B) \cap C$ 

# iii. Distributivity of Union over Intersection: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

L. H. 
$$S = A \cup (B \cap C) = \{1,2,3,4\} \cup [\{3,4,5,6,7,8\} \cap \{5,6,7,9,10\}]$$

$$A \cup (B \cap C) = \{1,2,3,4\} \cup \{5,6,7\} = \{1,2,3,4,5,6,7\}$$

R. H. S = 
$$(A \cup B) \cap (A \cup C) = [\{1,2,3,4\} \cup \{3,4,5,6,7,8\}] \cap [\{1,2,3,4\} \cup \{5,6,7,9,10\}]$$

$$(A \cup B) \cap (A \cup C) = \{1,2,3,4,5,6,7,8\} \cap \{1,2,3,4,5,6,7,9,10\} = \{1,2,3,4,5,6,7\}$$

Hence  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 

# iv. Distributivity of Intersection over Union: $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$

L. H. 
$$S = A \cap (B \cup C) = \{1,2,3,4\} \cap [\{3,4,5,6,7,8\} \cup \{5,6,7,9,10\}]$$

$$A \cap (B \cup C) = \{1,2,3,4\} \cap \{3,4,5,6,7,8,9,10\} = \{3,4\}$$

R. H. S = 
$$(A \cap B) \cup (A \cap C) = [\{1,2,3,4\} \cap \{3,4,5,6,7,8\}] \cup [\{1,2,3,4\} \cap \{5,6,7,9,10\}]$$

$$(A \cap B) \cup (A \cap C) = \{3,4\} \cup \{ \} = \{3,4\}$$

Hence  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 

```
(b) A = \varphi; B = \{0\}; C = \{0,1,2\}
i. Associativity of Union: A \cup (B \cup C) = (A \cup B) \cup C
L. H. S = A \cup (B \cup C) = \phi \cup [{0} \cup {0,1,2}] = \phi \cup {0,1,2} = {0,1,2}
R. H. S = (A \cup B) \cup C = [\phi \cup \{0\}] \cup \{0,1,2\} = \{0\} \cup \{0,1,2\} = \{0,1,2\}
Hence A \cup (B \cup C) = (A \cup B) \cup C
ii. Associativity of Intersection: A \cap (B \cap C) = (A \cap B) \cap C
L. H. S = A \cap (B \cap C) = \phi \cap [\{0\} \cap \{0,1,2\}] = \phi \cap \{0\} = \phi
R. H. S = (A \cap B) \cap C = [\phi \cap \{0\}] \cap \{0,1,2\} = \phi \cap \{0,1,2\} = \phi
Hence A \cap (B \cap C) = (A \cap B) \cap C
iii. Distributivity of Union over Intersection: A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
L. H. S = A \cup (B \cap C) = \phi \cup [\{0\} \cap \{0,1,2\}] = \phi \cup \{0\} = \{0\}
R. H. S = (A \cup B) \cap (A \cup C) = [\phi \cup \{0\}] \cap [\phi \cup \{0,1,2\}] = \{0\} \cap \{0,1,2\} = \{0\}
Hence A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
iv. Distributivity of Intersection over Union: A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
L. H. S = A \cap (B \cup C) = \phi \cap [\{0\} \cup \{0,1,2\}] = \phi \cap \{0,1,2\} = \phi
R. H. S = (A \cap B) \cup (A \cap C) = [\phi \cap \{0\}] \cup [\phi \cap \{0,1,2\}] = \phi \cup \phi = \phi
Hence A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
(c) A = N = \{1,2,3,...\}; B = Z = \{0,\pm 1,\pm 2,\pm 3,...\}; C = Q; N \le Z \le Q
i. Associativity of Union: A \cup (B \cup C) = (A \cup B) \cup C
L. H. S = A \cup (B \cup C) = N \cup [Z \cup Q] = N \cup Q = Q
R.H.S = (A \cup B) \cup C = [N \cup Z] \cup Q = Z \cup Q = Q
Hence A \cup (B \cup C) = (A \cup B) \cup C
ii. Associativity of Intersection:
                                               A \cap (B \cap C) = (A \cap B) \cap C
L. H. S = A \cap (B \cap C) = N \cap [Z \cap Q] = N \cap Z = N
R. H. S = (A \cap B) \cap C = [N \cap Z] \cap Q = N \cap Q = N
Hence A \cap (B \cap C) = (A \cap B) \cap C
iii. Distributivity of Union over Intersection: A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
L. H. S = A \cup (B \cap C) = N \cup [Z \cap Q] = N \cup Z = Z
R. H. S = (A \cup B) \cap (A \cup C) = [N \cup Z] \cap [N \cup Q] = Z \cap Q = Z
Hence A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
iv. Distributivity of Intersection over Union: A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
L. H. S = A \cap (B \cup C) = N \cap [Z \cup Q] = N \cap Q = N
R.H.S = (A \cap B) \cup (A \cap C) = [N \cap Z] \cup [N \cap Q] = N \cup N = N
```

Hence  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ 

7. Verify De Morgan's Laws for the following sets:

$$U = \{1, 2, 3, ..., 20\}, A = \{2, 4, 6, ..., 20\}$$
and  $B = \{1, 3, 5, ..., 19\}.$ 

#### **Solution**

| $(\mathbf{A} \cup \mathbf{B})' = \mathbf{A}' \cap \mathbf{B}'$ | $(\mathbf{A} \cap \mathbf{B})' = \mathbf{A}' \cup \mathbf{B}'$ |
|----------------------------------------------------------------|----------------------------------------------------------------|
| $U = \{1, 2, 3,, 20\}$                                         | $U = \{1, 2, 3,, 20\}$                                         |
| $A = \{2, 4, 6,, 20\}$                                         | $A = \{2, 4, 6,, 20\}$                                         |
| $B = \{1, 3, 5,, 19\}$                                         | $B = \{1, 3, 5,, 19\}$                                         |
| A' = U - A                                                     | A' = U - A                                                     |
| $= \{1, 2, 3,, 20\} - \{2, 4, 6,, 20\}$                        | $= \{1, 2, 3,, 20\} - \{2, 4, 6,, 20\}$                        |
| = {1, 3, 5,, 19}                                               | = {1, 3, 5,, 19}                                               |
| B' = U - B                                                     | B' = U - B                                                     |
| $= \{1, 2, 3,, 20\} - \{1, 3, 5,, 19\}$                        | $= \{1, 2, 3,, 20\} - \{1, 3, 5,, 19\}$                        |
| $= \{2, 4, 6,, 20\}$                                           | = {2, 4, 6,, 20}                                               |
| $A \cup B = \{1, 2, 3,, 20\}$                                  | $A \cap B = \{ \}$                                             |
| $(A \cup B)' = U - (A \cup B)$                                 | $(A \cap B)' = U - (A \cap B)$                                 |
| $= \{1, 2, 3,, 20\} - \{1, 2, 3,, 20\}$                        | = {1, 2, 3,, 20} - { }                                         |
| = { }                                                          | = {1, 2, 3,, 20}                                               |
| $A' \cap B' = \{1, 3, 5,, 19\} \cap \{2, 4, 6,, 20\}$          | $A' \cup B' = \{1, 3, 5,, 19\} \cup \{2, 4, 6,, 20\}$          |
| = { }                                                          | = {1, 2, 3,, 20}                                               |
| Hence $(A \cup B)' = A' \cap B'$                               | Hence $(A \cap B)' = A' \cup B'$                               |

8. Consider the set  $P = \{x | x = 5m, m \in N\}$  and  $Q = \{x | x = 2m, m \in N\}$ . Find  $P \cap Q$  Solution

$$P = \{x \mid x = 5m, m \in N\} = \{5, 10, 15, 20, 25, ...\}$$

$$Q = \{x \mid x = 2m, m \in N\} = \{2, 4, 6, 8, 10, 12, ...\}$$

$$P \cap Q = \{5, 10, 15, 20, 25, ...\} \cap \{2, 4, 6, 8, 10, 12, ...\}$$

$$P \cap Q = \{10, 20, 30, 40, 50, ...\} = \{x \mid x = 10m, m \in N\}$$

- 9. From suitable properties of union and intersection, deduce the following results:
  - (i)  $A \cap (A \cup B) = A \cup (A \cap B)$
- (ii)  $A \cup (A \cap B) = A \cap (A \cup B)$

(i) L.H.S. = 
$$A \cap (A \cup B) = (A \cap A) \cup (A \cap B) = A \cup (A \cap B) = R.H.S.$$

(i) L.H.S. = 
$$A \cup (A \cap B) = (A \cup A) \cap (A \cup B) = A \cap (A \cup B) = R.H.S.$$

10. If 
$$g(x) = 7x - 2$$
 and  $s(x) = 8x^2 - 3$  find:

(i) 
$$g(0)$$
 (ii)  $g(-1)$  (iii)  $g\left(-\frac{5}{3}\right)$  (iv)  $s(1)$  (v)  $s(-9)$  (vi)  $s\left(\frac{7}{2}\right)$ 

i. 
$$g(x) = 7x - 2 \Rightarrow g(0) = 7(0) - 2 \Rightarrow g(0) = -2$$

ii. 
$$g(x) = 7x - 2 \Rightarrow g(-1) = 7(-1) - 2 \Rightarrow g(-1) = -7 - 2 \Rightarrow g(-1) = -9$$

iii. 
$$g(x) = 7x - 2 \Rightarrow g\left(-\frac{5}{3}\right) = 7\left(-\frac{5}{3}\right) - 2 \Rightarrow g\left(-\frac{5}{3}\right) = -\frac{35}{3} - 2 \Rightarrow g\left(-\frac{5}{3}\right) = -\frac{41}{3}$$

iv. 
$$s(x) = 8x^2 - 3 \Rightarrow s(1) = 8(1)^2 - 3 \Rightarrow s(1) = 8 - 3 \Rightarrow s(1) = 5$$

$$\mathbf{v.} \ \mathbf{s}(\mathbf{x}) = 8\mathbf{x}^2 - 3 \Rightarrow \mathbf{s}(-9) = 8(-9)^2 - 3 \Rightarrow \mathbf{s}(-9) = 648 - 3 \Rightarrow \mathbf{s}(-9) = 645$$

**vi.** 
$$s(x) = 8x^2 - 3 \Rightarrow s\left(\frac{7}{2}\right) = 8\left(\frac{7}{2}\right)^2 - 3 \Rightarrow s\left(\frac{7}{2}\right) = 98 - 3 \Rightarrow s\left(\frac{7}{2}\right) = 95$$

11. Given that f(x) = ax + b, where a and b are constant numbers. If f(-2) = 3 and f(4) = 10, then find the values of a and b.

#### **Solution**

$$f(x) = ax + b$$
  
 $f(-2) = a(-2) + b$   $f(4) = a(4) + b$   
 $-2a + b = 3$  .....(i)  $4a + b = 10$  .....(ii)

(i) - (ii) 
$$-2a + b = 3 
-4a \pm b = -10$$

$$2(i) + (ii) 
-4a + 2b = 6 
4a + b = 10$$

$$b = \frac{16}{3}$$

12. Consider the function defined by k(x) = 7x - 5. If k(x) = 100, find the value of x.

$$k(x) = 7x - 5$$
  
Using  $k(x) = 100$   
 $7x - 5 = 100$   
 $7x = 100 + 5$   
 $x = \frac{105}{5}$ 

13. Consider the function  $g(x) = mx^2 + n$ , where m and n are constant numbers. If

$$g(4) = 20$$
 and  $g(0) = 5$ , find the values of m and n.

#### **Solution**

$$g(x) = mx^2 + n$$
  
 $g(0) = m(0)^2 + n$ 

$$n = 5$$

Now 
$$g(4) = m(4)^2 + n$$

$$16m + n = 20$$

Using 
$$n = 5$$

$$16m + 5 = 20$$

$$\mathbf{m} = \frac{15}{16}$$

- 14. A shopping mall has 100 products from various categories labeled 1 to 100, representing the universal set U. The products are categorized as follows:
  - Set A: Electronics, consisting of 30 products labeled from 1 to 30.
  - Set *B*: Clothing comprises 25 products labeled from 31 to 55.
  - Set *C*: Beauty Products, comprising 25 products labeled from 76 to 100. Write each set in tabular form, and find the union of all three sets.

$$U = \{1, 2, 3, \dots, 100\}$$

$$A = \{1, 2, 3, ..., 30\}$$

$$B = \{31, 32, 33, \dots, 55\}$$

$$C = \{76, 77, 78, \dots, 100\}$$

$$A \cup B \cup C = \{1, 2, 3, ..., 30\} \cup \{31, 32, ..., 55\} \cup \{76, 77, ..., 100\}$$

$$A \cup B \cup C = \{1, 2, 3, ..., 30, 31, 32, ..., 55, 76, 77, ..., 100\}$$

- 15. Out of the 180 students who appeared in the annual examination, 120 passed the math test, 90 passed the science test, and 60 passed both the math and science tests.
  - (a) How many passed either the math or science test?
  - (b) How many did not pass either of the two tests?
  - (c) How many passed the science test but not the math test?
  - (d) How many failed the science test?

Total students = 180

Passed Math = 120, Passed Science = 90, Passed both Math and Science = 60

### 1. How many passed either the Math or Science test?

Passed either Math or Science = Passed Math + Passed Science - Passed both

$$= 120 + 90 - 60 = 150$$

#### 2. How many did not pass either of the two tests?

Failed both Math and Science = Total students - Passed either Math or Science

$$= 180 - 150 = 30$$

# 3. How many passed the Science test but not the Math test?

Passed Science but not Math = Passed Science - Passed both

$$= 90 - 60 = 30$$

# 4. How many failed the Science test?

Failed Science = Total students - Passed Science

$$= 180 - 90 = 90$$

- 16. In a software house of a city with 300 software developers, a survey was conducted to determine which programming languages are liked more. The survey revealed the following statistics:
  - 150 developers like Python.
  - 130 developers like Java.
  - 120 developers like PHP.
  - 70 developers like both Python and Java.
  - 60 developers like both Python and PHP.
  - 50 developers like both Java and PHP.
  - 40 developers like all three languages: Python, Java and PHP.
    - (a) How many developers use at least one of these languages?
    - (b) How many developers use only one of these languages?
    - (c) How many developers do not use any of these languages?
    - (d) How many developers use only PHP?

Total developers = 300

$$n(P) = 150, n(J) = 130, n(H) = 120, n(P \cap J) = 70, n(P \cap H) = 60, n(J \cap H) = 50$$
  
 $n(P \cap J \cap H) = 40$ 

1. How many developers use at least one of these languages?

$$n(P \cup J \cup H) = n(P) + n(J) + n(H) - n(P \cap J) - n(P \cap H) - n(J \cap H) + n(P \cap J \cap H)$$
  
= 150 + 130 + 120 - 70 - 60 - 50 + 40 = **260**

2. How many developers use only one of these languages?

Developers who use only 
$$P = n(P) - n(P \cap J) - n(P \cap H) + n(P \cap J \cap H)$$
  
= 150 - 70 - 60 + 40 = 60

Developers who use only  $J = n(J) - n(P \cap J) - n(J \cap H) + n(P \cap J \cap H)$ 

$$= 130 - 70 - 50 + 40 = 50$$

Developers who use only  $H = n(H) - n(P \cap H) - n(J \cap H) + n(P \cap J \cap H)$ 

$$= 120 - 60 - 50 + 40 = 50$$

Total developers who use only one language = 60 + 50 + 50 = 160

### 3. How many developers do not use any of these languages?

Developers who do not use any language = Total developers - Developers who use at least one language

$$=300-260=40$$

## 4. How many developers use only PHP?

Developers who use only PHP = n(H) = 50