Mathematics 9: PCTB (2025) Authors: Muhammad Usman Hamid & Arshad Ali Available at MathCity.org

(EXERCISE 5.1)

1. Solve and represent the solution on a real line.

(i)	12x + 30 = -6	(ii)	$\frac{x}{3} + 6 = -12$	(iii)	$\frac{x}{2} - \frac{3x}{4} = \frac{1}{12}$
(iv)	2=7(2x+4)+12x	(v)	$\frac{2x-1}{3} - \frac{3}{4} = \frac{5}{6}$	(vi)	$\frac{-5x}{10} = 9 - \frac{10}{5}x$

Solution

(i) $12x + 30 = -6$	$(ii)\frac{x}{2} + 6 = -12$
12x = -6 - 30	$\frac{x}{2} - \frac{3}{12} - 6$
12x = -36	$\frac{3}{3}$
$x = -\frac{36}{12}$	$\frac{n}{3} = -18$
$x = -3^{12}$	$\mathbf{x} = -18 \times 3 \Rightarrow \mathbf{x} = -54$
$\underbrace{\begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(iii) $\frac{x}{2} - \frac{3x}{4} = \frac{1}{12}$	$(iv) \ 2 = 7(2x+4) + 12x$
$12 \times \begin{pmatrix} x \\ x \end{pmatrix} = 12 \times \begin{pmatrix} 3x \\ x \end{pmatrix} = 12 \times \begin{pmatrix} 1 \\ x \end{pmatrix}$	2 = 14x + 28 + 12x
$12 \times \left(\frac{-}{2}\right) - 12 \times \left(\frac{-}{4}\right) = 12 \times \left(\frac{-}{12}\right)$	2 - 28 = 14x + 12x
$6x - 9x = 1 \Rightarrow -3x = 1$	$-26 = 26x \Rightarrow x = -\frac{26}{26}$
$\mathbf{x} = -\frac{1}{3}$	x = -1
$\overbrace{-4 -3 -2 -1 -\frac{1}{3} 0 1 2 3 4}^{+} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$(\mathbf{v})\frac{2x-1}{3} - \frac{3x}{4} = \frac{5}{6}$	$(\mathbf{vi}) - \frac{5x}{10} = 9 - \frac{10}{5}x$
$12 \times \left(\frac{2x-1}{3}\right) - 12 \times \left(\frac{3x}{4}\right) = 12 \times \left(\frac{5}{6}\right)$	$10 \times \left(-\frac{5x}{10}\right) = 10 \times (9) - 10 \times \left(\frac{10}{5}x\right)$
4(2x - 1) - 9x = 10	-5x = 90 - 20x
8x - 4 - 9x = 10	$-5x + 20x = 90 \Rightarrow 15x = 90$
$8x - 9x = 10 + 4 \Rightarrow x = -14$	$\mathbf{x} = 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Visit us @ YouTube "Learning with Usman Hamid"

2. Solve each inequality and represent the solution on a real line.

(i)
$$x-6 \le -2$$
 (ii) $-9 > -16 + x$ (iii) $3+2x \ge 3$
(iv) $6(x+10) \le 0$ (v) $\frac{5}{3}x - \frac{3}{4} < \frac{-1}{12}$ (vi) $\frac{1}{4}x - \frac{1}{2} \le -1 + \frac{1}{2}x$

Solution

(i)	$2x + y \le 6$	(ii)	$3x + 7y \ge 21$	(iii)	$3x-2y \ge 6$
(iv)	$5x - 4y \le 20$	(v)	$2x+1 \ge 0$	(vi)	$3y-4 \leq 0$

Solution

 $3(i) 2x + y \le 6$

Associated equations: 2x + y = 6

To find Points:

Put x = 0, y = 6 then point is (0,6)

Put y = 0, x = 3 then point is (3,0)

To check Region put (0, 0) in given eq.

0 < 6 true, graph towards the origin

3 (ii) $3x + 7y \ge 21$

Associated equations: 3x + 7y = 21

To find Points

Put x = 0, y = 3 then point is (0,3)

Put y = 0, x = 7 then point is (7,0)

To check Region put (0, 0) in given eq.

0 > 21 false, graph away from origin

3 (iii) $3x - 2y \ge 6$

Associated equations: 3x - 2y = 6

To find Points:

Put x = 0, y = -3 then point is (0, -3)

Put y = 0, x = 2 then point is (2,0)

To check Region put (0, 0) in given eq.

0 > 6 false, graph away from origin

3 (iv) $5x - 4y \le 20$

Associated equations: 5x - 4y = 20

To find Points

Put
$$x = 0$$
, $y = -5$ then point is $(0, -5)$

Put y = 0, x = 4 then point is (4,0)

To check Region put (0,0) in given eq.

0 < 20 true, graph towards the origin

 $3(v) 2x + 1 \ge 0$

Associated equations: 2x + 1 = 0

Point: $x = -\frac{1}{2}$

Region: 1 > 0 true, graph towards the origin

3 (vi) $3y - 4 \le 0$

Associated equations: 3y - 4 = 0

Point: $y = \frac{4}{3}$

Region: 0 < 4 true, graph towards the origin

4. Indicate the solution region of the following linear inequalities by shading:

(i)
$$2x - 3y \le 6$$
 (ii) $x + y \ge 5$ (iii) $3x + 7y \ge 21$
 $2x + 3y \le 12$ $-y + x \le 1$ $x - y \le 2$
(iv) $4x - 3y \le 12$ (v) $3x + 7y \ge 21$ (vi) $5x + 7y \le 35$
 $x \ge -\frac{3}{2}$ $y \le 4$ $x - 2y \le 2$

Solution

4 (i)

$$2x - 3y \le 6$$
(i)

 $2x + 3y \le 12$ (ii)

Associated equations

2x - 3y = 6(iii)

2x + 3y = 12(iv)

To find Points

(iii) \Rightarrow Put x = 0, y = -2 then point is (0, -2)

(iii) \Rightarrow Put y = 0, x = 3 then point is (3,0)

(iv) \Rightarrow Put x = 0, y = 4 then point is (0,4)

(iv) \Rightarrow Put y = 0, x = 6 then point is (6,0)

To check Region put (0,0) in (i) and (ii)

(i) $\Rightarrow 0 < 6$ true, graph towards the origin

(ii) $\Rightarrow 0 < 12$ true, graph towards the origin

4 (ii)

$$x + y \ge 5$$
(i)
 $-y + x \le 1$ (ii)

Associated equations

x + y = 5(iii) x - y = 1(iv)

To find Points

- (iii) \Rightarrow Put x = 0, y = 5 then point is (0,5)
- (iii) \Rightarrow Put y = 0, x = 5 then point is (5,0)
- (iv) \Rightarrow Put x = 0, y = -1 then point is (0, -1)

(iv) \Rightarrow Put y = 0, x = 1 then point is (1,0)

To check Region put (0,0) in (i) and (ii)

(i) $\Rightarrow 0 > 5$ false, graph away from origin

(ii) $\Rightarrow 0 < 1$ true, graph towards the origin

4 (iii)

 $3x + 7y \ge 21$ (i)

 $x-y\leq 2\quad \ldots \ldots (ii)$

Associated equations

3x + 7y = 21(iii) x - y = 2(iv)

To find Points

- (iii) \Rightarrow Put x = 0, y = 3 then point is (0,3)
- (iii) \Rightarrow Put y = 0, x = 7 then point is (7,0)
- (iv) \Rightarrow Put x = 0, y = -2 then point is (0, -2)

(iv) \Rightarrow Put y = 0, x = 2 then point is (2,0)

To check Region put (0, 0) in (i) and (ii)

(i) $\Rightarrow 0 > 21$ false, graph away from origin

(ii) $\Rightarrow 0 < 2$ true, graph towards the origin

4 (iv)

$$4x - 3y \le 12$$
(i)
 $x \ge -\frac{3}{2}$ (ii)

Associated equations

$$4x - 3y = 12$$
(iii)
 $x = -\frac{3}{2}$ (iv)

To find Points

(iii)
$$\Rightarrow$$
 Put x = 0, y = -4 then point is (0, -4)

(iii) \Rightarrow Put y = 0, x = 3 then point is (3,0)

(iv)
$$\Rightarrow$$
 we have $y = 0$, $x = -\frac{3}{2}$ then point is $\left(-\frac{3}{2}, 0\right)$

To check Region put (0,0) in (i) and (ii)

(i) $\Rightarrow 0 < 12$ true, graph towards the origin

(ii) $\Rightarrow 0 > -\frac{3}{2}$ true, graph towards the origin

4 (v)

$3x + 7y \ge 12$(i)

 $y \le 4$ (ii)

Associated equations

3x + 7y = 12(iii)

$$y = 4 \quad \dots \quad (1V)$$

To find Points

- (iii) \Rightarrow Put x = 0, y = 3 then point is (0,3)
- (iii) \Rightarrow Put y = 0, x = 7 then point is (7,0)
- (iv) \Rightarrow we have x = 0, y = 4 then point is (0,4)

To check Region put (0,0) in (i) and (ii)

(i) $\Rightarrow 0 > 12$ false, graph away from origin

(ii) $\Rightarrow 0 < 4$ true, graph towards the origin

4 (vi)

 $5x + 7y \le 35$ (i)

 $x-2y\leq 2\quad \ldots \ldots (ii)$

Associated equations

5x + 7y = 35(iii) x - 2y = 2(iv)

To find Points

- (iii) \Rightarrow Put x = 0, y = 5 then point is (0,5)
- (iii) \Rightarrow Put y = 0, x = 7 then point is (7,0)
- (iv) \Rightarrow Put x = 0, y = -1 then point is (0, -1)

(iv) \Rightarrow Put y = 0, x = 2 then point is (2,0)

To check Region put (0,0) in (i) and (ii)

(i) $\Rightarrow 0 < 35$ true, graph towards the origin

(ii) $\Rightarrow 0 < 2$ true, graph towards the origin

1. Maximize f(x, y) = 2x + 5y; subject to the constraints

 $2y - x \le 8$; $x - y \le 4$; $x \ge 0$; $y \ge 0$

Solution

 $-x + 2y \le 8$ (i) $x - y \le 4$ (ii) **Associated equations** -x + 2y = 8(iii) x - y = 4(iv) **To find Points** (iii) \Rightarrow Put x = 0, y = 4 then point is (0,4) (iii) \Rightarrow Put y = 0, x = -8 then point is (-8,0) (iv) \Rightarrow Put x = 0, y = -4 then point is (0, -4) (iv) \Rightarrow Put y = 0, x = 4 then point is (4,0) To check Region put (0,0) in (i) and (ii) (i) $\Rightarrow 0 < 8$ true, graph towards the origin (ii) $\Rightarrow 0 < 4$ true, graph towards the origin (12, 16),(0,4)(0.0) (4.0)(0,-4) Solve (iii) + (iv)(-x + 2y) + (x - y) = 8 + 4 we have y = 12Put y = 12 in (iii) we have x = 16 and D(16,12)**Corner Points of Feasible Region:** A(0,0), B(4,0), C(0,4), D(16,12) At A: z = f(0,0) = 2(0) + 5(0) = 0

At B: z = f(4,0) = 2(4) + 5(0) = 8At C: z = f(0,4) = 2(0) + 5(4) = 20At D: z = f(16,12) = 2(16) + 5(12) = 92

So z = 2x + 5y is maximum at (16,12)

Corner Points of Feasible Region: A(0,0), B(4,0), C(0,5)At A: z = f(0,0) = (0) + 3(0) = 0At B: z = f(4,0) = (4) + 3(0) = 4At C: z = f(0,5) = (0) + 3(5) = 15So z = x + 3y is maximum at (0,5) 94

3. Maximize z = 2x + 3y; subject to the constraints:

 $2x + y \le 4$; $4x - y \le 4$; $x \ge 0$: $y \ge 0$ **Solution** $2x + y \le 4$ (i) $4x - y \le 4$ (ii) Associated equations 2x + y = 4(iii) 4x - y = 4(iv) **To find Points** (iii) \Rightarrow Put x = 0, y = 4 then point is (0,4) (iii) \Rightarrow Put y = 0, x = 2 then point is (2,0) (iv) \Rightarrow Put x = 0, y = -4 then point is (0, -4) (iv) \Rightarrow Put y = 0, x = 1 then point is (1,0) To check Region put (0,0) in (i) and (ii) (i) $\Rightarrow 0 < 4$ true, graph towards the origin (ii) $\Rightarrow 0 < 4$ true, graph towards the origin p(x,y) Solve (iii) + (iv)(2x + y) + (4x - y) = 4 + 4 we have $x = \frac{4}{2}$ Put x = $\frac{4}{3}$ in (iii) we have y = $\frac{4}{3}$ and the intersecting point is $\left(\frac{4}{3}, \frac{4}{3}\right)$ **Corner Points:** A(0,0), B(1,0), C(0,4), P $\left(\frac{4}{2}, \frac{4}{2}\right)$ At A: z = f(0,0) = 2(0) + 3(0) = 0At B: z = f(1,0) = 2(1) + 3(0) = 2At C: z = f(0,4) = 2(0) + 3(4) = 12At P: $z = f\left(\frac{4}{3}, \frac{4}{3}\right) = 2\left(\frac{4}{3}\right) + 3\left(\frac{4}{3}\right) = 6.66$ So z = 2x + 3y is maximum at (0.4)

4. Minimize z = 2x + y; subject to the constraints:

$$x + y \ge 3$$
 ; $7x + 5y \le 35$; $x \ge 0$; $y \ge 0$

Solution

 $x + y \ge 3 \dots(i)$ $7x + 5y \le 35 \dots(ii)$ Associated equations $x + y = 3 \dots(iii)$ $7x + 5y = 35 \dots(iv)$ To find Points (iii) \Rightarrow Put x = 0, y = 3 then point is (0,3) (iii) \Rightarrow Put y = 0, x = 3 then point is (3,0) (iv) \Rightarrow Put x = 0, y = 7 then point is (0,7) (iv) \Rightarrow Put y = 0, x = 5 then point is (5,0) To check Region put (0,0) in (i) and (ii) (i) $\Rightarrow 0 > 3$ false, graph away from the origin (ii) $\Rightarrow 0 < 35$ true, graph towards the origin

Corner Points: A(3,0), B(0,3), C(5,0), P(0,7) At A: z = f(3,0) = 2(3) + (0) = 6At B: z = f(0,3) = 2(0) + (3) = 3At C: z = f(5,0) = 2(5) + (0) = 10At P: z = f(0,7) = 2(0) + (7) = 7So z = 2x + y is minimum at (0,3)

Solution

 $2x + y \le 8$ (i) $x + 2y \le 14$ (ii) Associated equations 2x + y = 8(iii) x + 2y = 14(iv) **To find Points** (iii) \Rightarrow Put x = 0, y = 8 then point is (0,8) (iii) \Rightarrow Put y = 0, x = 4 then point is (4,0) (iv) \Rightarrow Put x = 0, y = 7 then point is (0,7) (iv) \Rightarrow Put y = 0, x = 14 then point is (14,0) To check Region put (0,0) in (i) and (ii) (i) $\Rightarrow 0 < 8$ true, graph towards the origin (ii) $\Rightarrow 0 < 14$ true, graph towards the origin C(0,7) B(2/3,20/3) Solve 2(iii) - (iv)(4x + 2y) - (x + 2y) = 16 - 14 we have $x = \frac{2}{3}$ Put x = $\frac{2}{3}$ in (iii) we have y = $\frac{20}{3}$ and $C\left(\frac{2}{3}, \frac{20}{3}\right)$ **Corner Points:** A(0,0), B(4,0), $C\left(\frac{2}{3}, \frac{20}{3}\right)$, D(0,7) At A: z = f(0,0) = 2(0) + 3(0) = 0At B: z = f(4,0) = 2(4) + 3(0) = 8At C: $z = f\left(\frac{2}{3}, \frac{20}{3}\right) = 2\left(\frac{2}{3}\right) + 3\left(\frac{20}{3}\right) = 21.33$ At D: z = f(0,7) = 2(0) + 3(7) = 21So z = 2x + 3y is maximum at $\left(\frac{2}{3}, \frac{20}{3}\right)$

6. Find minimum and maximum values of z = 3x + y; subject to the constraints:

$$3x + 5y \ge 15$$
; $x + 6y \ge 9$; $x \ge 0; y \ge 0$

Solution

 $3x + 5y \ge 15$ (i) $x + 6y \ge 9$ (ii) **Associated equations** 3x + 5y = 15(iii) x + 6y = 9(iv) **To find Points** (iii) \Rightarrow Put x = 0, y = 3 then point is (0,3) (iii) \Rightarrow Put y = 0, x = 5 then point is (5,0) (iv) \Rightarrow Put x = 0, y = $\frac{3}{2}$ then point is $\left(0, \frac{3}{2}\right)$ (iv) \Rightarrow Put y = 0, x = 9 then point is (9,0) To check Region put (0,0) in (i) and (ii) (i) $\Rightarrow 0 > 15$ false, graph away from the origin (ii) $\Rightarrow 0 > 9$ false, graph away from the origin C(0,3) B(45/13, 12/13) 8 A(9,0) -2 Solve 3(iv) - (iii)(3x + 18y) - (3x + 5y) = 27 - 15 we have $y = \frac{12}{13}$ Put y = $\frac{12}{13}$ in (iii) we have x = $\frac{45}{13}$ and B $\left(\frac{45}{13}, \frac{12}{13}\right)$ **Corner Points:** A(0,3), B $\left(\frac{45}{13}, \frac{12}{13}\right)$, C(9,0) At A: z = f(0,3) = 3(0) + 3 =At B: $z = f\left(\frac{45}{13}, \frac{12}{13}\right) = 3\left(\frac{45}{13}\right) + \frac{12}{13} = 11.3$ At C: z = f(9,0) = 3(9) + 0 = 27So z = 3x + y is minimum at (0,3) and maximum at (9,0)

	-			
		REVIEW	EXERCIS	£5)
1. Fo	our opt	ions are given against	each statement. Encircle	e the correct one.
i.	In th	e following, linear eq	uation is:	
	(a)	5x > 7	(b)	4x - 2 < 1
	V(C)	2x + 1 = 1	(d)	4 = 1 + 3
ii.	Solu	tion of $5x - 10 = 10$ is	s:	
	(a)	0	(b)	50
	V(c)	4	(d)	- 4
iii.	If 7x	x + 4 < 6x + 6, then x l	belongs to the interval	
	(a)	$(2,\infty)$	(b)	[2,∞)
	(c)	(-∞, 2)	(d)	(-∞, 2]
iv.	A ve	ertical line divides the	plane into	
	(a)	left half plane	(b)	right half plane
	(c)	full plane	(d)	two half planes
v.	The	linear equation forme	ed out of the linear inequ	ality is called
	(a)	linear equation	(b)	associated equation
	(c)	quadratic equal	(d)	none of these
vi.	3x +	4 < 0 is:		
	(a)	equation	(b)	inequality
	(c)	not inequality	(d)	identity
vii.	Corr	ner point is also called	1:	
	(a)	code	(b)	vertex
	(c)	curve	(d)	region

viii. (0,0) is solution of inequality:

v 111.	(0,0)	is solution of mequality.			
	(a)	4x + 5y > 8		(b)	3x + y > 6
	(c)	-2x + 3y < 0		(d)	x + y > 4
ix.	The s	solution region restricted to	the first qu	ıadrant	is called:
	(a)	objective region		(b)	feasible region
	(c)	solution region		(d)	constraints region
X.	A fu	nction that is to be maximize	d or minin	mized is	s called:
	(a)	solution function		(b)	objective function
	(c)	feasible function		(d)	none of these
2.	Solve	e and represent their solution	s on real l	ine.	
	(i)	$\frac{x+5}{3} = 1-x$	(ii)	$\frac{2x+1}{3}$	$\frac{1}{2} + \frac{1}{2} = 1 - \frac{x - 1}{3}$
	(iii)	3x + 7 < 16	(iv)	5(x-1)	$3) \ge 26x - (10x + 4)$
Solutio	n				
(i) $\frac{x+5}{2}$:	= 1 -	x	(ii) $\frac{2x+1}{2}$	$+\frac{1}{2}=1$	$1 - \frac{x-1}{2}$
x + 5 =	= 3 - 3	3x	$6 \times \left(\frac{2x+1}{2x+1}\right)^{3}$	$+ 6 \times$	$\left(\frac{1}{2}\right) = 6 \times (1) - 6 \times \left(\frac{x-1}{2}\right)$
x + 3x	= 3 -	5	2(2x +) 1) + 3 :	= 6 - 2(x - 1)
$4x = -\frac{1}{2}$.2		4x + 2 -	+3 = 6	-2x+2
$\mathbf{x} = -\frac{2}{4}$	<u>-</u> ŀ		4x + 2x	= 6 + 1	2 - 2 - 3
$x = -\frac{1}{2}$	<u>-</u> 2		6x = 3		
<		··· · · · · · · · · · · · · · · · · ·	$x = \frac{1}{2}$		
-4 -3	-2	$-1 - \frac{1}{2} = 0$ 1 2 3 4	← -3	-2 -1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(iii) 3 <i>x</i>	+7 <	16	(iv) 5(<i>x</i>	− 3) ≥	26x - (10x + 4)
3x < 1	6 – 7		5x - 15	$b \ge 26x$	-10x - 4
3x < 9			5x - 15	$\geq 16x$	-4
$x < \frac{1}{3}$			5x - 16 -11r >	$x \ge -4$. 11	+ 15
<i>x</i> < 3			$r < -\frac{1}{r}$	<u>1</u>	
4	6 - 4	-2 0 2 3 4 6 8	$x \leq -1$	1	

4

-6

6

4

ż

Õ

3. Find the solution region of the following linear equalities:

i)	$3x - 4y \le 12$;	$3x + 2y \ge 3$
ii)	$2x + y \le 4$;	$x + 2y \le 6$

Solution

3 (i) $3x - 4y \le 12$ (i) $3x + 2y \ge 3$ (ii) Associated equations 3x - 4y = 12(iii) 3x + 2y = 3(iv) To find Points (iii) \Rightarrow Put x = 0, y = -3 then point is (0, -3)(iii) \Rightarrow Put y = 0, x = 4 then point is (4,0)(iv) \Rightarrow Put x = 0, $y = \frac{3}{2}$ then point is $(0, \frac{3}{2})$ (iv) \Rightarrow Put y = 0, x = 1 then point is (1,0)To check Region put (0,0) in (i) and (ii) (i) $\Rightarrow 0 < 12$ true, graph towards the origin (ii) $\Rightarrow 0 > 3$ false, graph away from the origin

3 (ii) $2x + y \le 4$ (i) $x + 2y \le 6$ (ii) **Associated equations** 2x + y = 4(iii) x + 2y = 6(iv) **To find Points**

(iii) \Rightarrow Put x = 0, y = 4 then point is (0,4) (iii) \Rightarrow Put y = 0, x = 2 then point is (2,0) (iv) \Rightarrow Put x = 0, y = 3 then point is (0,3)

(iv) \Rightarrow Put y = 0, x = 6 then point is (6,0)

To check Region put (0, 0) in (i) and (ii)

(i) $\Rightarrow 0 < 4$ true, graph towards the origin

(ii) $\Rightarrow 0 < 6$ true, graph towards the origin

4. Find the maximum value of g(x,y) = x + 4y subject to constraints $x + y \le 4, x \ge 0$ and $y \ge 0$.

Solution

 $x + y \le 4$ **Associated equations** x + y = 4**To find Points** \Rightarrow Put x = 0, y = 4 then point is (0,4) \Rightarrow Put y = 0, x = 4 then point is (4,0) To check Region put (0,0) in (i) and (ii) 0 < 4 true, graph towards the origin

Corner Points: A(0,0), B(0,4), C(4,0) At A: z = g(0,0) = (0) + 4(0) = 0At B: z = g(0,4) = (0) + 4(4) = 16At C: z = g(4,0) = (4) + 0(0) = 4So z = x + 4y is maximum at (0,4)

Find the minimum value of f(x,y) = 3x + 5y subject to constraints 5. $x + 3y \ge 3$, $x + y \ge 2$, $x \ge 0$, $y \ge 0$. Solution $x + 3y \ge 3$ (i) $x + y \ge 2$ (ii) **Associated equations** x + 3y = 3(iii) x + y = 2(iv) **To find Points** (iii) \Rightarrow Put x = 0, y = 1 then point is (0,1) (iii) \Rightarrow Put y = 0, x = 3 then point is (3,0) (iv) \Rightarrow Put x = 0, y = 2 then point is (0,2) (iv) \Rightarrow Put y = 0, x = 2 then point is (2,0) To check Region put (0,0) in (i) and (ii) (i) $\Rightarrow 0 > 3$ false, graph away from the origin (ii) $\Rightarrow 0 > 2$ false, graph away from the origin Ø Solve (iii) - (iv)(x + 3y) - (x + y) = 3 - 2 we have $y = \frac{1}{2}$ Put y = $\frac{1}{2}$ in (iii) we have x = $\frac{3}{2}$ and $P\left(\frac{3}{2}, \frac{1}{2}\right)$ **Corner Points:** A(2,0), B(3,0), $P\left(\frac{3}{2}, \frac{1}{2}\right)$ At A: z = f(2,0) = 3(2) + 5(0) = 6At B: z = f(3,0) = 3(3) + 5(0) = 9At P: $z = f\left(\frac{3}{2}, \frac{1}{2}\right) = 3\left(\frac{3}{2}\right) + 5\left(\frac{1}{2}\right) = 8$ So z = 3x + 5y is minimum at (2,0) and maximum at (3,0)