ON STOLARSKY AND RELATED MEANS

K. GACSETIC AND SAIMA NAZ KHAN

ABSTRACT. We give a simple proof of the Stolarsky means inequality as well
as some related inequalities for similar means of Stolarsky type.

1. Introduction and Preliminaries

Let us consider the following means
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where z and y are positive real numbers x # y,r and s are any real numbers but
0.

These means, known in literature, are called Stolarsky means. Namely Sto-
larsky[1] in 1975 (see also [2, p.120]) introduced these means. Stolarsky proved
that the function E(r,s) is increasing in both r and s i.e. for r < u and s < v, we
have

(1) E(z,y;r,s) < E(x,y;u,v).

In this paper, first we shall give a simple proof of inequality (1). Further we shall
introduce two new classes of means of Stolarsky type.

2. A Simple Proof of Stolarsky Means Inequality

Note that E(r,s) is continuous, this means it is enough to prove (1) in the case
where 7, s,u,v # 0,7 # s and u # v. We consider the following function
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f(x) = p?0.(z) + 2pgpi(x) + ¢*ps(x)  where t = " and p,q € R, and
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This implies f is monotonically increasing. So for x # y
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p°o(r) + 2pgé(t) + ¢°d(s) > 0
i.e.
H*(t) < o(r) - ¢(s) where t= r ;L 5

This implies ¢ is log-convex in Jensen sense.

Also lim,_,0 ¢(r) = ¢(0), which implies ¢ is continuous for all » € R. And
therefore log-convex.

We need following lemma which proof can be found in [2].

Lemma 2.1. Let f be log-convex function and if, x1 < y1, 22 < yo, 1 # To,y1 #
Y2, then the following inequality is valid:
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Applying Lemma 2.1 for f = ¢, (let 7, s,u,v # 0) we get an inequality
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Since E(r, s) is continuous, we have (1).
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CONCLUSION

In the literature, many researchers have published so many results on different
major generalizations of convex function. Many authors today focus on interval-
valued functions, which is known as the (h, m)-convex interval-valued function.
Additionally, we give the rigorous proof of the famous Hermite-Hadamard type
inequality for m-convex in intervalvalued.
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