


Preface

Multivariable calculus is a fundamental subject that extends the concepts of single-
variable calculus to higher-dimensional spaces. It provides a powerful framework
for analyzing and modeling complex phenomena in fields such as physics,
engineering, economics, and computer science.

This textbook is designed to provide a comprehensive introduction to multivariable
calculus, covering topics such as Vectors, Functions, partial derivatives, multiple
integrals, and differential equations, Laplace and Fourier Transformations,
Sequence, Series and Complex Integration. Through a combination of theoretical
foundations, practical applications, and numerous examples and exercises, we aim
to equip students with a deep understanding of the subject matter and its relevance
to real-world problems.

Throughout the book, we emphasize the development of problem-solving skills,
critical thinking, and mathematical maturity. We also highlight the connections
between multivariable calculus and other areas of mathematics, such as linear
algebra and differential equations.

Our goal is to make this textbook a valuable resource for students, instructors, and
researchers alike, providing a solid foundation for further study and exploration in
mathematics, science, and engineering.
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Superior Group of Colleges

Sillanwali, Sargodha

Purpose of this course is to develop the skills to have ground knowledge of
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MULTI VARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

In this chapter we will learn about;

Functions of Several Variables

Limits and Continuity

Partial Derivatives

Differentiability

Tangent Planes and Linear Approximations

The Chain Rule

Partial Derivatives with Constrained Variables
Directional Derivatives and the Gradient Vector
Maximum and Minimum Values

Extreme Values, Saddle Points, Stationary Points, Critical Points
Lagrange Multipliers

Taylor’s Formula

Functions of Several VVariables

In this section we study functions of two or more variables from four points of
view:

m verbally (by a description in words)
m numerically (by a table of values)

m algebraically (by an explicit formula)
m visually (by a graph or level curves)
Functions of Two Variables

A function of two variables is a rule that assigns to each ordered pair of real
numbers (x,y) in a set D a unique real number denoted by f(x,y). The set D is the
domain of f and its range is the set of values that f takes on, that is,

{f(x,y): (x,y) € D}

We often write z = f(x,y) to make explicit the value taken on by f at the general
point (x,y). The variables x and y are independent variables and z is the dependent
variable.
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Example

For the following function, evaluate and find and sketch the domain.

flx, y) == _fl
Solution xﬂ/ﬂzo o
3 L9 11 3 |
j3+2+1 /6 | =1
f3.2) == = |
(3.2) P ; :
=10 | x
|
D={xy | x+y+1=0 x==1} -l |
Example
For the following function, evaluate and find and sketch the domain.
f(x, y) = xIn(y* — x)
Solution
f{3+2]=3111{22—3}=31n1=0 VA
ﬁ 2

D={xy | x<y*}

0
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Example

In regions with severe winter weather, the wind-chill index is often used to
describe the apparent severity of the cold. This index W is a subjective temperature
that depends on the actual temperature T and the wind speed v. So W is a function
of T and v, and we can write W=f (T,v). Table records values of W compiled by
the National Weather Service of the US and the Meteorological Service of Canada.

Wind speed (km/h)

v 5 10 15 20 25 30 40 50 60 70 80

5 4 3 2 1 1 0| -1 -1 -2| -2| -3

o, -2 -3| -4 -5, -6| -6| -7 -8 -9| —-9|—10
=5 -7 -9 | -11|-12|-12 | —-13 | —-14 | —-15 | —16 | —16 | —17
—-10 | —-13 | —-15| —-17 | —18 | —19 | —20 | —21 | —22 | —23 | —23 | —24
—23 | —24 | —-25 | —26 | —27 | —29 | —30 | —30 | —31
—20 | —24 | -27|-29|-30|—-32|—-33 | -34|-35| —-36 | —-37 | —38
=25 |-30|—-33|—-35| 37| —-38| -39 | —41 | —42 | —43 | —44 | —45
—30| —36 -39 | —41 | —43 | —44 | —46 | —48 | —49 | =50 | —51 | —52
=35 | —41 | —45 | —48 | —49 | =51 | =52 | —54 | —56 | —57 | —58 | —60
—40 | —47 | =51 | —54 | =56 | =57 | =59 | —61 | —63 | —64 | —65 | —67

Actual temperature (°C)
|
o
|
©
|
2

For instance, the table shows that if the temperature is —5°C and the wind speed is
50 km/h, then subjectively it would feel as cold as a temperature of about —15°C
with no wind. So

f(—5,50) = —15

Visit us @ YouTube “Learning with Usman Hamid”



Example

In 1928 Charles Cobb and Paul Douglas published a study in which they modeled
the growth of the American economy during the period 1899-1922. They
considered a simplified view of the economy in which production output is
determined by the amount of labor involved and the amount of capital invested.
While there are many other factors affecting economic performance, their model
proved to be remarkably accurate. The function they used to model production was
of the form

P(L, K) = bl*K'™®
where P is the total production (the monetary value of all goods produced in a
year), L is the amount of labor (the total number of person-hours worked in a year),
and K is the amount of capital invested (the monetary worth of all machinery,
equipment, and buildings).
Cobb and Douglas used economic data published by the government to obtain
Table. They took the year 1899 as a baseline and P, L, and K for 1899 were each
assigned the value 100. The values for other years were expressed as percentages
of the 1899 figures.

ear P I .4
1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 266
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431
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Cobb and Douglas used the method of least squares to fit the data of Table to the
function

P K) = 1.01*" K"

If we use the model given by the function in previous equation to compute the
production in the years 1910 and 1920, we get the values

P(147, 208) = 1.01(147)°7°(208)°* =~ 161.9
P(194, 407) = 1.01(194)°7°(407)"* = 235.8

which are quite close to the actual values, 159 and 231.
The production function

P(L, K) = bL*K'™

has subsequently been used in many settings, ranging from individual firms to
global economics. It has become known as the Cobb-Douglas production
function. Its domain is {(L,K): L = 0, K > 0} because L and K represent labor
and capital and are therefore never negative.

Example

Find the domain and range of g(x, y) = /9 — x%2 — 2.

Solution

Domain is

D={xy|9-¥-y'=z0={xy|x¥+y'<9

YA

Range is

{

-l el
x*+y =9

| 0=<z=<3}=[0,3]

I-]
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Graph

If is a function of two variables with domain D, then the graph of f is the set of all
points (x,y,z) in R® such that z = f(x,y) and (x,y) is in D.

Linear Function

A function of the form f(x,y) = ax + by + c is called a linear function. The
graph of such a function has the equation

z=ax+by+cor ax+by—z+c=0

so it is a plane. In much the same way that linear functions of one variable are
important in single-variable calculus, we will see that linear functions of two
variables play a central role in multivariable calculus.

Example

Sketch the graph of the function f(x, y) = 6 — 3x — 2y.

Solution

The graph of f has the equation z = 6 — 3x — 2y, or 3x + 2y + z = 6, which
represents a plane. To graph the plane we first find the intercepts.

Putting y = z = 0 in the equation, we get x = 2 as the -intercept. Similarly, the y -
intercept is 3 and the z-intercept is 6. This helps us sketch the portion of the graph
that lies in the first octant in Figure.

I (0,0,6)
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Example

Sketch the graph of g(x, y) = /9 — x2 — 2

Solution

The graph has equation z = \/9 — x2 — y2 .

We square both sides of this equation to obtain z2 = 9 — x% — y?2,

or x% + y? + z? =9, which we recognize as an equation of the sphere with
center the origin and radius 3. But, since z = 0, the graph of g is just the top half of
this sphere.

(8]

(0, 0, 3)

(0, 3,0)
(3,0, 0)

Example
Draw the graph of the Cobb-Douglas production function

P(L, K) = 1.011%5K°%

Solution

Figure shows the graph of P for values of the labor L and capital K that lie between
0 and 300. The computer has drawn the surface by plotting vertical traces. We see
from these traces that the value of the production P increases as either L or K

increases, as Is to be expected.
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Example

Find the domain and range and sketch the graph of A(x, y) = 4x* + y*

Solution
Domain is R?
The range of h is [0, oo) the set of all non-negative real numbers.

The graph of h has the equation z = 4x2 + y? , which is the elliptic paraboloid.
Horizontal traces are ellipses and vertical traces are parabolas.

Remark

So far we have two methods for visualizing functions: arrow diagrams and graphs.
A third method, borrowed from mapmakers, is a contour map on which points of
constant elevation are joined to form contour lines, or level curves.

Level Curves

The level curves of a function f of two variables are the curves with equations
(x,¥) = k , where k is a constant (in the range of f).

Or

A level curve f(x,y) = k is the set of all points in the domain of f at which f
takes on a given value k. In other words, it shows where the graph of f has height
K.
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Example
A contour map for a function f is shown in Figure. Use it to estimate the values of
f(1,3) and £ (4,5).
Vi .
50—
5
/, .“. ."' - e \\.
II min | . L |
3 BUISIN |||‘I IT] .I
\ [\ 80 S0 7/
1 70" )| 707} /
60 60— |/
o . s s .
Solution

The point (1, 3) lies partway between the level curves with z-values 70 and 80. We
estimate that

f(1,3) = 73
Similarly, we estimate that
f(4,5) = 56

Example

Sketch the level curves of the function f(x,y) = 6 — 3x — 2y for the values
k =—6,0,6,12

Solution

The level curvesare 6 —3x — 2y =kor3x+2y+(k—6) =0

This is a family of lines with slope — % The four particular level curves with
k=-60612are3x+2y—12=03x+2y —6 =0and 3x + 2y = 0. They
are sketched. The level curves are equally spaced parallel lines because the graph
of f is a plane (see Figure on right).

VA z
I 0,0,6)
0 ¥ | ..
< | \= \= \* NP
A ) 2 2 T ,0,3,0
$ o @ \ (2.0.0) )
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Example
Sketch the level curves of the function

g(x, ) = V9 — x2 — y? for k=0,1,2,3
Solution
The level curves are /9 — x2 — y2 = k or x2 + y2 =9 — k?

This is a family of concentric circles with center (0,0) and radius V9 — k2. The
cases k = 0,1,2,3 are shown in Figure. Try to visualize these level curves lifted up
to form a surface and compare with the graph of g (a hemisphere) in Figure on
right.

y
k=1 - c
(3, Uy T y

X

Example

Sketch the level curves of the function f(x,y) = 4x2 + y2 + 1
Solution

The level curves are

X N ¥
k-1 k-1
which, for k > 1, describes a family of ellipses with semiaxes %\/k — 1 and

k—1.
Figure (a) shows a contour map of h drawn by a computer. Figure (b) shows these
level curves lifted up to the graph of h (an elliptic paraboloid) where they become
horizontal traces. We see from Figure how the graph of h is put together from the
level curves.

i

%

Ax* +y*+1=k or 1
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Example

12
Plot level curves for the Cobb-Douglas production function.
Solution
In Figure
K A
30[] 1 | I| II \ I' Il I|
II II IIII III' IIII|
I|I IlI ',I IlII |
200 +
| Voo
1 Vo N 180
100 AR LA
100 1‘\\ \\\ AN \\“%.H\H”'“
| T ——
100 200 300 L

we use a computer to draw a contour plot for the Cobb-Douglas production
function

P(L, K) = 1.01L""K*®

Level curves are labeled with the value of the production P. For instance, the level
curve labeled 140 shows all values of the labor L and capital investment K that
result in a production of P = 140. We see that, for a fixed value of P, as L increases
K decreases, and vice versa.
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Functions of Three or More Variables

A function of three variables,f, is a rule that assigns to each ordered triple (x,y, z)
in a domain D c R3 a unique real number denoted by f(x, v, z). For instance, the

temperature T at a point on the surface of the earth depends on the longitude x and
latitude y of the point and on the time t, so we could write T = f(x, y, t).

Example
Find the domain of f if

f(x, y,z) = In(z — y) + xysinz
Solution
D={xyz2eR|z>p

This is a half-space consisting of all points that lie above the plane z = y.
Example
Find the level surfaces of the function f(x,y,z) = x? + y? + z2
Solution
The level surfaces are x? + y? + z? = k, where k > 0. These form a family of
concentric spheres with radius vk. (See Figure)

> X2 +y>?+:z2=9

x*+y*+z2=4

x2+y?+22=1

Thus, as (x, y, z) varies over any sphere with center O, the value of f(x,y, z)
remains fixed.
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Functions of n — Variables

A function of n variables, is a rule that assigns a number z = f(x,, x,, x3, ..., x;;) t0
an —tuple (x, x5, X3, ..., x,,) of real numbers. We denote by R" the set of all such n
—tuples.

For example, if a company uses different ingredients in making a food product, c;
is the cost per unit of the i™ ingredient, and x; units of the i"™ ingredient are used,
then the total cost C of the ingredients is a function of the n variables

X1, X9, X3, ey Xp:

C=f(xi, X, ..., Xy) = CX1 + GXz + -+ + CuXy

Remember

In view of the one-to-one correspondence between points (x4, x,, x3, ..., x,,) in R"
and their position vectors x = (x4, x5, X3, ..., X,,) In V,, we have three ways of
looking at a function f defined on a subset of R"™;

1. As a function of real variables x;, x,, x5, ..., x,,
2. As a function of a single point variable (x4, x5, x3, ..., X;,)

3. As a function of a single vector variable x = (x;, x5, X3, ..., X,)
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Limits
Let f be a function of two variables whose domain D includes points arbitrarily

close to (a,b). Then we say that the limit of f(X,y) as (X,y) approaches (a,b) is L
and we write

IMtey) @b F(XY) =L

If for every number €> 0 there is a corresponding number § > 0 such that

if (xy)€D and 0<(x—a?+ (y—b2<6 then |[fxy —L|<e
Remark

If f(x,y)—L; as (x,y)— (a,b) along a path C; and f(x,y)—L, as (x,y)— (a,b) along
a path C,, where L, # L,, then limit does not exist.

Example

' @
. X -y .
Show that lim E—}gdnes not exist.
(x p—(0.0) X -V

Solution

x2—y?2
x2+y2

Giventhat f(x,y) =

x%-y

I
(x.y)lir(lx,O) x2+y?

2

Along Horizontal Axis: puty =0; limy )50 f(X,Y) =

x2—y?

lim =
(x,y)lﬁ(O,y) x2+y?

Along Vertical Axis: put X =0; lim, y)-0y) f(x,¥) =

Since we have obtained different limits along different paths, the given limit does
not exist.

f=-1
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Example

If f(x, y) = xy/(x* + y*), does N P!Elﬂ . f(x, y) exist?
Solution -

Giventhat f(x,y) = xzxj’yz

Along Horizontal Axis: puty = 0; limgyyox0) f(X,¥) = (X,yl)iir(lx,o) xzxfyz =
Along Vertical Axis: putx =0; limgy)-(0,) f(x, ) = (x,yl)i—r>r(10,y) xzxj]yz =

. X 1
li Y —

m 242
(x,y)-(x,x) x*+y 2

Along the liney = X; limgy ) xx) f (X, Y) =

Since we have obtained different limits along different paths, the given limit does
not exist.

Example
X : .
If f(x, y) = —; Y -, does lim f(x, y) exist?
xt + y (x, 3)—(0, 0)

Solution
Giventhat f(x,y) = =2

f a4 _x2+y4 2

. _ - . . xy?*  m2x
Along the liney = mx; lim )5 emx) (X, Y) = (x’y)l%lc’mx) iyt = Trmia?

Thus f has the same limiting value along every nonvertical line through the origin.
But that does not show that the given limit is O, for if we now let (x,y) — (0,0)
along the parabola x = y?2, we have

M) ma) foy) = (x,JI)Li(rJrllz,mx) 1+mtx2 2
Since different paths lead to different limiting values, the given limit does not
exist.

m?x 1
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Example
3x°
Find lim ; Y if it exists.
(x)—0,00 X* + J°
Solution
Let €> 0. We want to find § > 0 such that
. 3x’y
if 0<yx2+y2<dé then |55 -0 <¢
Xt + y
. . 3x°| y|
that is, if 0<+x*+ y? <d then f €
X Ty

But x* < x* + y*since y* = 0, so x*/(x* + y*) < 1 and therefore

2
3L 31y =3y <3y T g

X+y

Thus if we choose 6 = &/3 and let 0 < /x% + y? < §, then

3x'y

o <airy <s0-9(2) -

Xt + y

Hence, by Definition,

X'y

lim =

xy—0.0 x° + y*
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Continuity
A function f of two variable is said to be continuous at (a,b) if

Iirn(x,y) —(a,b) f(X,Y) = f(a!b)

We say f is continuous on D if f is continuous at every point (a,b) in D.

Example

Evaluate lim (x°y° — xX’y* + 3x + 2y)
(x y)—(1,2)

Solution

Since this is a polynomial, it is continuous everywhere, so we can find the limit by
direct substitution:

lim (& — ¥y +3x+2))=12-2" —13-22 +3.1+2-2=11

(x y—(1,2)

Example
2 2

Where is the function f(x, y) = ; ;j;z continuous?

Solution

The function f is discontinuous at (0,0) because it is not defined there. Since f is a
rational function, it is continuous on its domain, which is the set

D={(xy | (x 3 # (0,0}

Example (Previously Solved)
Discuss the continuity of

-

ﬂ if (x, y) # (0,0)
g(x, y) =1 x + y°
0 if (x, y) =(0,0)

LY
Solution

Here g is defined at (0,0) but is still discontinuous there because lim y) .,0) g(X,Y)
does not exist.
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Example (Previously Solved)
Discuss the continuity of

-

3x’y if (x, y) # (0, 0)
flx, yy={x"+y

0 if (x, y) = (0, 0)

.

Solution

We know f is continuous for (X,y) # (0,0) since it is equal to a rational function
there. Also, we have

_ _ 3x°
lim f(xy)= lim —2—=0=£0,0)
(x.))—(0.0) (xp—00 xX° + y
Therefore £ is continuous at (0,0), and so it is continuous on R,
Example
Where is the function h(x,y) = arctan(y/x) continuous?
Solution

The function f(x,y) = % Is a rational function and therefore continuous except on

the line x = 0. The function g(t) = arctan(t) is continuous everywhere. So the
composite function

g( f(x, y)) = arctan(y/x) = h(x, y)

Is continuous except where . The graph in Figure shows the break in the graph of
above the -axis.
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Continuity of Function with three Variables

A function f of three variable is said to be continuous at (a,b,c) if

Iim(x,y,z) —(a,b,C) f(X,y,Z) = f(a,b)

We say f is continuous on D if f is continuous at every point (a,b,c) in D.
Or

For every number €> 0 there is a corresponding number § > 0 such that

if (x y,z)isinthe domainof f and 0 < (x—a*+ (y— D2+ (z— 0% <$é

then |flxyz) — L|<e

The function fis continuous at (a, b, ¢) if

lim ) f(x, y,z) = f(a, b, 0

(x,y.z)—1la b c

For instance, the function

1
X2+_y2+22—1

f(x, 5,2) =

is a rational function of three variables and so is continuous at every point in R
except where x2 + y2 + z2 = 1. In other words, it is discontinuous on the sphere
with center the origin and radius 1.

Remark

If we use the vector notation, then we can write the definitions of a limit for
functions of two or three variables in a single compact form as follows.

If fis defined on a subset D of R”, then lim,_., f(x) = L means that for
every number £ > 0 there is a corresponding number & > 0 such that

if xeD and 0<|x—a|<d then |f(x) —L|<e¢
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Partial Derivatives
If f is a function of two variables, its partial derivatives are the functions f, and f,
defined by

f(x+ hy — f(x, y
h

£(x. ) = lim

b = i 18D = s

Notations for Partial Derivatives
If z= f(x,y), we write

af 0 0
of 0 0z

Rule for Finding Partial Derivatives of z = f(x,y)
1. To find £, regard y as a constant and differentiate f(x, y) with respect to x.

2. To find £, regard x as a constant and differentiate f(x, y) with respect to y.
Example

If f(x,y) =x" + x*y* — 2y% find £(2, 1) and £(2, 1)
Solution

£(x, y) = 3x* + 2xy°
£f(2,1)=3:-224+2-2-1°=16

H(x, y) = 3x°y* — 4y

£2,1)=3:2°+1"-4-1=8

Visit us @ YouTube “Learning with Usman Hamid”



22

Interpretations of Partial Derivatives

The partial derivatives f,.(a, b) and f,, (a, b) can be interpreted geometrically as the
slopes of the tangent lines at P(a, b, ¢) to the traces C; and C, of S in the planes
y=Dband x =a.

(a, b, 0)

Remark
Partial derivatives can also be interpreted as rates of change. If z = f(x,y) , then Z—i

represents the rate of change of z with respect to x when y is fixed. Similarly, g—i

represents the rate of change of z with respect to y when X is fixed.

Example

If f(x,y) = 4—x*—2y? find f,(1,1) and f,,(1,1) and interpret these numbers as
slopes.

Solution

We have

f(xy) = —2x t(x, y) = —4y

£(1,1) = 2 £(1,1) = —4

The graph of f is the paraboloid z = 4 — x? — 2y?2 and the vertical plane y = 1
intersects it in the parabola z = 2 — x2, y = 1. (See Figure 1.)

The slope of the tangent line to this parabola at the point (1, 1, 1) is £,.(1,1) = —2.
Similarly, the plane x = 1 intersects the paraboloid is the parabola z = 3 — 2y?2,

x =1, and the slope of the tangent line at (1, 1, 1) is £,(1,1) = —4.

(See Figure 2.)
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Example
of aof
If f(x, y) = sin _r , calculate — and —.
1 +y Jx ay

Solution

Using the Chain Rule for functions of one variable, we have

of X 4. X X 1
—— = CO0S . = CO0S .
X (1+y) 6X(1+}/) (1+y) 1 +y

23

E=cos X .0 X = —Cos X . X
ay 1+y ay\1+y 1+y (1 + y)?

Example

Find Z—i and Z—; If z is defined implicitly as a function of x and y by the equation

X+y +z22+6xyz=1

Solution
iz X'+ 2yz
dX 7% + 2xy

9z Yy 4 2xz

dy 7% + 2xy
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Functions of More Than Two Variables

Partial derivatives can also be defined for functions of three or more variables. For
example, if £ is a function of three variables X, y, and z, then its partial derivative
with respect to x is defined as

f(x+ hyz— fxyz)

f(x, y, z) = lim

h—0 b
Generally we may write
au . f(le---szf—ls‘Xf+hs‘x'f"‘l!---sffﬂ)_f(le---aXf:°°°1Xﬂ)
— = lim
ax;  h—0 h

and we also write

%, of
S =f=Df
0 X; 0X;
Example
Find £, £, and £if f(x, y,z) = eVInz.
Solution
= ye"Inz
e
f, = xe"Inz and f=—
z
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Higher Derivatives
If / is a function of two variables, then its partial derivatives f, and f, are also

functions of two variables, so we can consider their partial derivatives (f,)., (f),
(%), and (fy)y, which are called the second partial derivatives of f.

If z= f(x,y), we use the following notation:

d [ of o*f 0%z

frx: — — T 9 —
Y ax \ax x> ox

(£o)x

_a [ of f 9z
ay \ ox dyox  dyox

_a [ of f 9z
dx \ dy dxdy  dxady

o af o*f 0’z
b=l =y ) T Ty

2
Thus the notation £, (or aay_afx) means that we first differentiate with respect to X
and then with respect to y, whereas in computing f,,, the order is reversed.
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Example
Find the second partial derivatives of

flx, ) = x + x*y° — 2y°

Solution
f(x, y) = 3x* + 2xy° f(x, y) = 3x*y* — 4y

Therefore

fH:%(3X2+2Xy3):6X+ 25 gj:aiy(sxuz.xf):sxf

0 0
1},:&(33’2)/2—4)/):6{}/2 fﬂ.za—y(?:xzyz—ﬁly):ﬁxzy—ﬁl
Clairaut’'s Theorem
The following theorem, which was discovered by the French mathematician Alexis

Clairaut (1713-1765), gives conditions under which we can assert that f,., = f,,

Clairaut’s Theorem Suppose { is defined on a disk D that contains the point (a, b).
If the functions £, and £, are both continuous on D, then

ty(a b) = f.(a D)
In need we may also use

f«;’ﬂ" = Lyxy = Iywx
Example

Calculate £, if f(x, y, z) = sin(3x + yz).

Solution

f, = 3 cos(3x + yz)
fix = —9sin(3x + yz)
firy = —9zcos(3x + yz)

fixy: = —9cos(3x + yz) + 9yzsin(3x + yz)
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Partial Differential Equations
» Laplace’s equation after Pierre Laplace (1749-1827). Solutions of this
equation are called harmonic functions; they play a role in problems of heat
conduction, fluid flow, and electric potential.

aE af

axt dy2

= The wave equation describes the motion of a waveform, which could be an
ocean wave, a sound wave, a light wave, or a wave traveling along a
vibrating string.

o%u , 9°U

=0

YT
= Heat conduction equation
Uy = Uy,
Example

Show that the function u(x, y) = e*sin yis a solution of Laplace’s equation.
Solution

u, = e'sin y u, = e*cos y
J— X o3 - X =
U = €°Sin y Uy, = —e'siny

Uy + Uy =€"siny — e'siny=10

Therefore u satisfies Laplace’s equation.
Example

Verify that the function u(x, {) = sin(x — ai) satisfies the wave equation.
Solution
u, = cos(x — af) u, = —acos(x — al

U, = —sin(x — aif) u, = —a‘sin(x — at) = a’uy

Therefore u satisfies wave equation.
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Tangent Planes

A tangent plane is a flat surface that touches a curved surface at a single point,
called the point of tangency. It is a plane that contains all the tangent lines to a
surface at that point.

Equation of Tangent Plane to a Surface

Suppose { has continuous partial derivatives. An equation of the tangent
plane to the surface z = f(x, y) at the point A xo, yp, zo) is

z — zp = KXo, Yo)(x — Xo) + £(x0, Yo )(¥ — o)
Example

Find the tangent plane to the elliptic paraboloid z = 2x2 + y? at the point (1,1,3).

Solution

Let f(x, y) = 2x* + y*. Then

f(x, y) = 4x f(x, y) =2y
f(1,1) =4 1‘}(1, 1)=2

Then the equation of the tangent plane at (1,1,3) is

z—3=4x—-1+2(y— 1)
z=4x+ 2y — 3
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Linearization
The linear function whose graph is this tangent plane, namely

L(x, y) = fla, b) + f(a, D)(x — a) + f(a, b)(y — b)

is called the linearization of f at (a, b).

Linear Approximations

The linear approximation of a function is approximating the value of the function
at a point using a line.

Or the approximation

f(x, y) = f(a, b) + t(a, b)(x — a) + f(a D)(y — D)

is called the linear approximation or the tangent plane approximation of f at (a, b).

Example
Find the Linearization and Linear Approximation to the paraboloid z = 2x2 + y?

at the point (1,1,3).
Solution

Let f(x, y) = 2x* + y*. Then

f(x, y) = 4x H(x, y) = 2y
f(1,1) =14 £(1,1) =2

Then the equation of the tangent plane at (1,1,3) is

z—3=4(x—1) +2(y—1)

z=4x+ 2y — 3

Then Linearization is
Lx,yy=4x+ 2y — 3
And Linear Approximation is

f(x, yy =4x+ 2y — 3
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Increment
If z = f(x,y), then the increment of z is

Az=fla+ Ax, b+ Ay) — f(a, b)

Differentiable Function/ Differentiability

If z = f(x, y), then fis differentiable at (a, b) if Az can be
expressed in the form

Az = fla D) Ax + f(a, D) Ay + &1 Ax + g, Ay

where ¢, and &; — 0 as (Ax, Ay) — (0, 0).
Theorem
If the partial derivatives f, and f, exist near (a, b) and are continuous at (a, b),
then £ is differentiable at (a, b).
Example
Show that f(x,y) = xe™ is differentiable at (1, 0) and find its linearization there.
Then use it to approximate f(1.1,—0.1).

Solution
L(x, y) = e¥ + xye"” £(x y) = x2e™

Both £, and f, are continuous functions, so f is differentiable. The linearization is

Lx, y) = £f(1,0) + £(1,0)(x — 1) + £(1,0)(y — 0)
=1+1lx—1)+1-y=x+y

The corresponding linear approximation is
xe¥ = x+y
f(1.1, -0.1) = 1.1 — 0.1 =1

Compare this with the actual value of

f(1.1, —0.1) = 1.1e7""" = 0.98542
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Differentials

For a differentiable function of two variables, z = f(x, y), we define the
differentials dx and dy to be independent variables; that is, they can be given any
values. Then the differential dz, also called the total differential is defined by

dz = f(x, y) dx + £(x, y) dy = —dr+ —ydy
Example
(a) If z = f(x, y) = x* + 3xy — ¥, find the differential d-.

(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values
of Az and c-.

Solution
(a)
dz Za—deJr Ed}/z 2x + 3y dx + 3x — 2y) dy
4 ay

(b) Putting x = 2, dx = Ax= 0.05, y= 3, and dy = Ay = —0.04, we get
= [2(2) + 3(3)]0.05 + [3(2) — 2(3)](—0.04) = 0.65
The increment of z is

Az = f(2.05, 2.96) — £(2, 3)

— [(2.05)% + 3(2.05)(2.96) — (2.96)*] — [2% + 3(2)(3) — 3?]
— 0.6449

Notice that Az = dz but ¢ is easier to compute.
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Example

The base radius and height of a right circular cone are measured as 10 cm
and 25 cm, respectively, with a possible error in measurement of as much as 0.1cm
in each. Use differentials to estimate the maximum error in the calculated cone.
Solution

The volume V of a cone with base radius r and height hisV = %nrzh. So the
differential of V is

oV oV 2mrh mre
dV—d—dF Edb_ 3 dr + 3

Since each error is at most 0.1 cm, we have |Ar| < 0.1, | Ah| < 0.1. To estimate the
largest error in the volume we take the largest error in the measurement of r and of A.
Therefore we take dr = 0.1 and dh = 0.1 along with r = 10, # = 25. This gives

dh

5007 1007
deTT(O.l) —"'(0 1) = 207
Thus the maximum error in the calculated volume is about 207 cm® = 63 cm? |

Functions of Three or More Variables
For such functions the linear approximation is

f(x,y,z) = fla, b c) + (a b o(x— a + £(a, b c)(y— b) + £(a b, c)z— 0

and the linearization L(x,y,z) is the right side of this expression.

If w = f(x,y,z), then the increment of w is

Aw=f(x + Ax, y + Ay, z + Az) — f(x ¥, 2)

The differential dw is defined in terms of the differentials dx, dy, and dz of the
independent variables by

dw_—d)i’—l——d}/ N
0x dy dz
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Example

The dimensions of a rectangular box are measured to be 75 cm, 60 cm, and 40 cm,
and each measurement is correct to within 0.2 cm. Use differentials to estimate the
largest possible error when the volume of the box is calculated from these
measurements.

Solution

If the dimensions of the box are x, y, and z, its volume is V' = xyz and so

aV aV aV
dV = dx + dy+—dz=yzdx+ xxdy + xydz

ox ay dz
We are given that |Ax| < 0.2, |Ay| < 0.2, and | Az| < 0.2. To estimate the largest error
in the volume, we therefore use dx = 0.2, dy = 0.2, and dz = 0.2 together with x = 75,
y =60, and z = 40:

AV = dV = (60)(40)(0.2) + (75)(40)(0.2) + (75)(60)(0.2) = 1980
Thus an error of only 0.2 cm in measuring each dimension could lead to an error of
approximately 1980 cm? in the calculated volume! This may seem like a large
error, but it’s only about 1% of the volume of the box.
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The Chain Rule (Case - I)

Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and
y = h(t)are both differentiable functions of t. Then z is a differentiable function of t
and

dz of dx of dy

— = +
dt dx dt 9y dt

. ., 0z . d : : :
Since we often write a—i in place of é, we can rewrite the Chain Rule in the form

dz  dz dx N dz dy
dt dx dt dy dt
Proof

A change of At in At produces changes of Ax in x and Ay in y. These, in turn,
produce a change of Az in z, and from we have

Az za—f_\x—l— —f_\y-i— e1Ax + g Ay
0x ay

where &, — 0 and &, — 0 as (Ax, Ay) — (0, 0). [If the functions &, and &, are not
defined at (0, 0), we can define them to be 0 there.] Dividing both sides of this equation

by At, we have
Az _ofAx  ofdy Ax Ay

= —+ + E1— + &
At ox At dy At At AI

If we now let At — 0, then Ax = g(¢t + Af) — g(f) — 0 because g is differentiable and

therefore continuous. Similarly, Ay — 0. This, in turn, means that &, — 0 and &, — 0, so

E = lim £
dt a—=o At

_of . Ax | of Ay ) - Ax ) Ay
= fim Sl T (i) T S (fim ) i 2
_ofde ofdy o dv o dy
ox dt oy dt dt dt
af dv  of dy
_ L9 —
Cox dt ay dt
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Example
Ifz = x*y + 3xy*, where x = sin 2¢tand y = cos ¢, find dz/dt when t = 0.
Solution

dz 9z dx Jz dy
_I_
dt dx df dy dt
= (2xy + 3y*)(2 cos 20) + (x* + 12xy°)(—sin §)

It’s not necessary to substitute the expressions for x and y in terms of £ We simply
observe that when = 0, we have x = sin 0 = 0 and y = cos 0 = 1. Therefore

% = (0 + 3)(2cos 0) + (0 + 0)(—sin 0) = 6

Example

The pressure P (in kilopascals), volume V (in liters), and temperature 7
(in kelvins) of a mole of an ideal gas are related by the equation PV = 8.317. Find the
rate at which the pressure is changing when the temperature is 300 K and increasing at a
rate of 0.1 K/s and the volume is 100 L and increasing at a rate of 0.2 L/s.

Solution
If ¢represents the time elapsed in seconds, then at the given instant we have
T= 300, d7/dt = 0.1, V= 100, dV/dt = 0.2. Since

T
P= 8.31?

dP _ aP dT+ aP dV: 8.31 dT_ 8.31T dV
dt oT dt oV dt V dt VvV dt
8.31 8.31(300)

=222 (0.1) -
100 Y 1002

(0.2) = —0.04155

The pressure is decreasing at a rate of about 0.042 kPa/s.
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The Chain Rule (Case — I1)

Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s,t)
and y = h(s,t) are both differentiable functions of t. Then z is a differentiable
function of s and t, then

82_6265’_'_826)/ 62_8261+626y
ds dx ds  dy oS df  dx dt  dy df
Example

If z = e*sin y, where x = st’ and y = s°t, find dz/dsand 9z/at.
Solution

dz _ 0z ox 0z 4y _ . )
o5 9x 95 Jy 05 (e*sin y)(£*) + (e*cos y)(2s0)

= e sin(sf) + 2ste cos(s%l)

d dz d dz d
; = ai aj - a—;a—}; = (e*sin y)(2sf) + (e*cos y)(s*)

— 2ste” sin(s?) + s2e* cos(s%l)

The Chain Rule (General Version)
Suppose that v is a differentiable function of
the n variables xi, x, ..., x, and each x; is a differentiable function of the m vari-
ables #, &, ..., t,. Then vis a function of 4, &, ..., t,and

ot ax, ot oxy ot ax, ot

Ju au dxy du dXxe ou o0x,
+ + -+

foreachi=1,2,..., m
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Example

Write out the Chain Rule for the case where w = f(x, y, z, £) and
x=x(u,v), y= Wu,v),z=z(u v),and t = Hu, v).
Solution
We apply The Chain Rule (General Version) with n =4 and m = 2. Figure shows
the tree diagram.

u v ou v U v ou v
Although we haven’t written the derivatives on the branches, it’s understood that if

a branch leads from y to u, then the partial derivative for that branch is S—Z. With the
aid of the tree diagram, we can now write the required expressions:

dw dw Jdx  dw dy  Jw 0z dw ot
= + + +

au dx du dy du dz du dt du

dw dw dx dw dy = dw 0z dw dl
= + + +

v dXx dv dy dv dz dv at dv

Example

If u= x*y + y*z° where x = rse’, y = rs’e™, and z = r’ssin ¢, find the
value of du/dswhenr=2,s=1,t= 0. u
Solution
With the help of the tree diagram in Figure, we have X
ou_oudx | ou iy ou iz /

ds  ax as Ay s 9z as

= (Ax’y)(re’) + (x* + 2y2°)(2rse”™") + (3y°2°)(r*sin 0)
Whenr=2,s=1,and = 0, we have x=2, y=2,and z = 0, so

% = (64)(2) + (16)(4) + (0)(0) = 192
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Example

If g(s, ) = f(s* — £ t* — s*) and fis differentiable, show that g satisfies
the equation

9 9
t=L + s~
das at
Solution
Let x = s — f2 andy: 2 — s% Then g(s, ) = f(x, y) and the Chain Rule
gives
0 of o of @ of of
99 _ R Y ey Mgy
ds  dx ds  Jy ds 09X ay
0 of o of o of of
99 _ L ox A op i gy
ot ox ot dy ot  Ix ay
Therefore
fa—g - 5% = (25t£ — 2sf£) - (—ZSfa—f - ZSIE) =0 L
as ot ox ay dx oy
Example

If z = f(x, y) has continuous second-order partial derivatives and x = r* + s
and y = 2rs, find (a) 9z/d9rand (b) 6*z/ar>.

Solution

(a) The Chain Rule gives
dz 0z 8X+Eiz 6}/:6

0
= 20+ (28)
ar odx or dy dr  dx dy

(b) Applying the Product Rule to the expression in part (a), we get

0%z d 0z dz
— = |\ 2r— + 25—
or or 0

5]

But, using the Chain Rule again (see Figure),
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dz
dx

we have

a (a a (oz)a a [az) a 0 9
ZE) =S E) E s S E) - op + ey
or \ ox ox \dx) dar dy \dx) or Jx oy ox

d (0 g (az) a d (adz) o 0* 9°
CE) = I E) 2L L E) L2 T oy + 22y
or \ ay ox \ady/) or dy \ady/) or  dxdy dy
Putting these expressions into Equation 5 and using the equality of the mixed second-
order derivatives, we obtain

o 3 9’ a9 0 a9’
—Z=2—Z+2r(2r—22+25 Z)+25(2r 42 z)

s
ar’ ax dx ayox axay ay*
0z 0%z 0%z 9%z
=2— +4r'— + 8rs + 45—
0 0 oxay dy

Implicit Differentiation
Implicit differentiation makes use of the chain rule to differentiate a function

which cannot be explicitly expressed in the form y= f(x).
It is defined as follows

oF
dy  ox K

x  F K
ay
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The Implicit Function Theorem
The Implicit Function Theorem, proved in advanced calculus, gives conditions
under which this assumption is valid:

It states that if F is defined on a disk containing (a,b) where, F(a,b) =0,
Fy(a,b) # 0 and F, and F, are continuous on the disk, then the equation F(x,y) =0
defines y as a function of x near the point (a,b) and the derivative of this function is
given by Equation

dF
dy ox  F
dx  oF F;,
y
We may also write as follows
JF JF
Jz _ ox jz dy
- aF oy oF
0z 0z
Example
Find y' if x* + y° = 6xy.
Solution

The given equation can be written as

Fx,y)=x*+y —bxy=0

dy F  3xX*-6y  x'—2y

dx F,  37%—6x  y'—2x
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0 0
Find — and — if x* +y + 22+ bxyz = 1.

0Xx

Solution

y

Let ix, y,z) = x+ y* + 2° + 6xyz — 1.

Then, we have
0z
ax
0z
a_y =

3x +6yz X' +2yz

322+ 6xy ¥+ 2xy
3y +bxz Y+ 2xz

322+ 6xy ¥+ 2xy
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Directional Derivatives

The directional derivative of £ at (xo, };) in the direction of a unit
vectoru = (a, b) is

f(xo + ha, yo + hb) — f(x0, )
h

if this limit exists.

Theorem
If £ is a differentiable function of x and y, then f has a directional derivative in the
direction of any unit vector u = {(a, b) and

D, f(x,y) = f(x, y)a+ £(x y) b

Proof
If we define a function g of the single variable h by

g(h) = f(xo + ha, yo + hb)

then, by the definition of a derivative, we have

v 1. g —g(0) f(xo + ha, y + hb) — f(x0, }o)
[4] g'(0) = }111_% = lim

h—0 11

= Dy f(xo, )’0)

On the other hand, we can write g(4) = f(x, y), where x = x; + ha, y = y» + hb, so the
Chain Rule (Theorem 14.5.2) gives

of dx af dy
Y = — _— = v ; —|— | s
9=t ay dh bx y)a+ 4(xyb

If we now put 4 = 0, then x = x,, y = y, and

5] g'(0) = £(x0, yo) @ + £(Xo, yo) b
Comparing Equations 4 and 5, we see that

D, f(x0, Yo) = £(x0, o) @ + £(x0, Yo) b _—
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If the unit vector u makes an angle 8 with the positive -axis (as in Figure),

y

0 X

then we can write u = (cos#, sinf) and the formula in Previous Theorem becomes

D, f(x, y) = £(x, y) cos 8 + £(x, y) sin@

Example
Find the directional derivative D,, f (x, y) if

f(x, y) = x* — 3xy + 4y*

and u is the unit vector given by angle 6§ = /6. What is D, £(1, 2)?
Solution

D, f(x, y) = £(x, y) cos % + £(x y) sin%_
V3

= (3x* — 3)/)7 + (—3x + 8y);3

—3[3v3 % = 3x+ (8 - 33)y]
Therefore

D, f(1,2) = 1[3y3(17 — 3(1) + (8 — 3v3)®@)] = w
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The Gradient Vector

If £ is a function of two variables x and y, then the gradient of f is the vector
function Vf defined by

VAx y) = (L(x y), £(x y) = gi + %j

Example
Find the gradient vector if

If f(x, y) = sin x + e,

Solution

Vix y) = (£ £) = (cos x + ye*, xe¥)
VA0,1) = (2,0)

Remark
With the notation for the gradient vector, we can rewrite the directional derivative
of a differentiable function as

Dyf(x, y) =Vf(x, y) *u

This expresses the directional derivative in the direction of a unit vector u as the
scalar projection of the gradient vector onto u.
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Example
Find the directional derivative of the function

flx, y) =xy’ — 4y

at the point (2,—1) in the direction of the vector.
v=2i+ 5j

Solution

We first compute the gradient vector at (2, —1):
Vix y) = 2xy°i + (3x°y* — 4)j

V2, —1) = —4i + §j

Note that v is not a unit vector, but since |v| = /29, the unit vector in the direction
of vis

u=i=2i s
v V29 ' 299

Therefore, we have

5
D, f(2, —1) = V{2, —1) -u=(—4i + §j) - (\/ﬁ i+ WJ)

~4-2+8-5 32

V29 V29

The directional derivative for the Functions of Three Variables
The directional derivative of f at (xo, ys, zo) in the direction of a
unit vector u = (a, b, c) is

f(xo + h + hb, zy + ho) — fi
Dy f(Xo, Yo, z0) = flfl_I»IqI} (%o a Jo ) 2}0} c) (X0, Yo, Z0)

if this limit exists.
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Directional Derivative in the Compact Form
If we use vector notation, then we can write the directional derivative in the
compact form

f(xyg + ) — f(xy)
D, f(Xo) = lim —— =
h—0 h
The Gradient Vector for the Functions of Three Variables
If £ is a function of three variables x,y and z, then the gradient of f is the vector
function Vf defined by
of . of . of
Vi=(f b £)y=—i+-—j+—k
dx ay dz
Remark

With the notation for the gradient vector, we can rewrite the directional derivative
of a differentiable function as

Dyf(x,y,2) =Vf(x, y,2) - u

Example
If f(x, y, z) = xsin yz, (a) find the gradient of £ and (b) find the direc-
tional derivative of fat (1, 3, 0) in the directionofv=1 + 2j — k.
Solution
(a) The gradient of fis

VI(x y.2) = (A . 2). flx y2). £x y,2))
= (sin yz, xz cos yz, Xy cos yz)

(b) At (1, 3, 0) we have V£(1, 3, 0) = (0, 0, 3). The unit vector in the direction of
v=i+2j—kis

Dy, f(1,3,0) = V£(1,3,0) - u
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Maximizing the Directional Derivative

Suppose we have a function f of two or three variables and we consider all
possible directional derivatives of f at a given point. These give the rates of
change of f in all possible directions. We can then ask the questions: In which of
these directions does f change fastest and what is the maximum rate of change?
The answers are provided by the following theorem.

Theorem

Suppose {1is a differentiable function of two or three variables. The

maximum value of the directional derivative D, f(x) is | Vf(x) | and it occurs when
u has the same direction as the gradient vector V (x).

Proof

Using equation

Dyf(x,y) = Vi(x,p) - u

We have
Dy, f=Vf-u=|Vf||lu|cosf=|Vf|cosh

where 6 is the angle between V f and u. The maximum value of cos 6 is 1 and this occurs
when 6 = 0. Therefore the maximum value of D, fis | V | and it occurs when 6 = 0,
that is, when u has the same direction as V £.

Example

(a) If f(x, y) = xe’, find the rate of change of f at the point A2, 0) in the direction from
Pto Q3. 2{

(b) In what direction does f have the maximum rate of change? What is this maximum
rate of change?

Solution
(a) We first compute the gradient vector:

Vix y) = (& £) = (&, xe/)
VA2, 0) = (1,2)

The unit vector in the direction of P_é = (—15,2)isu = <— : %) so the rate of change

of fin the direction from Pto @ is
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Duf(2,0) = VA2,0)-u=(1,2) (-2

3 4
=1(=3) +2(5) =1
(b) Here, f increases fastest in the direction of the gradient vector

V£(2,0) = (1, 2). The maximum rate of change is
[VA2,0)|=[(1,2)[ =5

Example

Suppose that the temperature at a point (x, y, z) in space is given by
T(x, y, z) = 80/(1 + x* + 2y* + 3Z°), where T is measured in degrees Celsius and
X, ¥, z in meters. In which direction does the temperature increase fastest at the point
(1, 1, —2)? What is the maximum rate of increase?
Solution
The gradient of T is

o 160x . 320y o 180z .
B A Y S A T T ]
160

e

At the point (1, 1, —2) the gradient vector is

VT(1,1, —2) = 33(—i — 2j + 6k) = §(—i — 2j + 6k)
Here the temperature increases fastest in the direction of the gradient vector

VT(1,1, —2) = i(—i — 2j + 6k) or, equivalently, in the direction of —i — 2j + 6k or

the unit vector (—i — 2j + 6k)/y/41. The maximum rate of increase is the length of the
gradient vector:

IVT(1,1, -2)| =3 -i—2j+ 6k| =341

Therefore the maximum rate of increase of temperature is 3 /41 = 4°C/m. |
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Tangent Planes to Level Surfaces

Suppose S is a surface with equation F(x,y, z) = k, that is, it is a level surface of a
function F of three variables, and let P(x,, yo, Zo) be a pointon S. Let C be any
curve that lies on the surface S and passes through the point P. Then tangent plane
to the level surface F(x,y,z) = k at P(x,, Yo, Z) as the plane that passes through
P and has normal vector VF (x,, yo, Zo) is defined by the following equation

E(Xu.)/u, 2)(x — Xo) + E—-(Xn, M, ZD}(}’_ }fu) + F.(xo, Yo, z0)(z — 20) = 0

A tangent plane to a level surface serves as a flat plane that touches the surface at a
single point, effectively acting as a linear approximation of the surface's behavior
In the immediate vicinity of that point, allowing us to analyze local properties like
the gradient and normal vector at that specific location on the surface; essentially,
it provides a way to understand how the surface changes near a particular point by
representing it with a flat plane that best fits the curvature at that point.

Normal Line

A normal line to a point (x,y) on a curve is the line that goes through the point
(x,y) and is perpendicular to the tangent line. Since the normal line and tangent line
are perpendicular, they will have slopes that are opposite reciprocals of each other.

Equation of the Normal Line

The equation of a normal line to a curve at a given point is y=mx+b, where m is
the slope and b is the y-intercept. The slope of the normal line is the negative
reciprocal of the curve's derivative at the point.

Symmetric Equations of the Normal Line
X — X B _,V — _,Vn Z — Ip
FK(X[]! ‘yﬂr Zﬂ) FY(X[:I! ‘yﬂr Zﬂ) E’(X[]! ‘yﬂs Zﬂ)
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Example
Find the equations of the tangent plane and normal line at the point (—2,1, —3) to
the ellipsoid

X o
— +y+——=3
4 y 9

Solution
The ellipsoid is the level surface (with k = 3) of the function

x° z°
FTX,}/,Z)—TJFJ/Z Yy

Therefore we have
2z

X
FX(X,y,z)=E F(x, y,z) = 2y FZ(X,y,z)ZK

F(-2,1,-3) = -1 F(-2,1,-3) =2 F(-2,1,-3) =}

Then the equation of the tangent plane at (—2,1, —3) is

—1(x+2) +2y—1) —3z+3)=0
which simplifies to 3x — 6y + 2z + 18 = 0.

Also, symmetric equations of the normal line are

x+2 y—-1 z+4+3

Significance of the Gradient Vector

= A gradient vector signifies the direction of the steepest ascent (or maximum
rate of change) of a scalar field at a given point, essentially pointing in the
direction where a function increases the fastest, with its magnitude
representing the "steepness" of that increase.

= The gradient vectors always point to the direction where the function
increases maximum. This property helps to find maxima/minima of the
function using the steepest ascent/descent algorithm.

La| 2
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Extreme Value of a Function

An extreme value of a function is a maximum or minimum value of the function
within a given interval. There are two types of extreme values: local and absolute.

Maximum Value of a Function

The "maximum value" of a function refers to the highest value that the function
reaches across its entire domain, essentially the "peak" point on the graph of the
function; it's the value where the function is greater than or equal to all other values
it can produce.

Key points about maximum value:

Visual interpretation:

On a graph, the maximum value is the highest point on the curve representing the
function.

Finding the maximum:

To find the maximum value, you typically need to calculate the derivative of the
function, set it equal to zero to find critical points, and then evaluate the function
at those points along with the endpoints of the domain to identify the highest
value.

Local Maximum of a Function

A function of two variables has a local maximum at (a,b) if f(x,y) < f(a, b)
when (x,y) is near (a,b). [This means that f(x,y) < f(a, b) for all points (x,y)
in some disk with center (a,b).] The number f(a, b) is called a local maximum
value.

Absolute/ Global Maximum of a Function

A function of two variables has an absolute maximum at (a,b) if f(x,y) < f(a, b)
for all points in in the domain of f.

Local vs. Global maximum:
Local maximum: A point where the function is higher than its immediate
neighbors but might not be the highest overall.

Global maximum: The absolute highest value of the function across its entire
domain.
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Minimum Value of a Function

The "minimum value" of a function refers to the lowest point on the graph of that
function, essentially the smallest output value the function can produce across its
entire domain; it's the point where the function reaches its lowest possible value.

Key points about minimum value:

Visualizing:

When looking at a graph, the minimum value is the "lowest point" on the curve.
Finding with calculus:

To mathematically find the minimum value, you typically take the derivative of
the function, set it equal to zero to find critical points, then test those points to see
which one gives the lowest output.

Local Minimum of a Function

A function of two variables has a local minimum at (a,b) if f(x,y) = f(a, b)
when (x,y) is near (a,b). [This means that f(x,y) = f(a, b) for all points (x,y)
in some disk with center (a,b).] The number f(a, b) is called a local minimum
value.

Absolute/ Global Minimum of a Function

A function of two variables has an absolute minimum at (a,b) if f(x,y) = f(a, b)
for all points in in the domain of f.

Local vs. Global minimum:
Local minimum: A point where the function is lower than its immediate
neighbors, but might not be the lowest value overall.

Global minimum: The absolute lowest value the function takes on across its
entire domain.
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Remark

Look at the hills and valleys in the graph of f shown in Figure. There are two
points (a, b) where f has a local maximum, that is, where f(a, b) is larger than
nearby values of f(x, y). The larger of these two values is the absolute maximum.
Likewise, has two local minima, where f(a, b) is smaller than nearby values. The
smaller of these two values is the absolute minimum.

absolute

£ Maximum
local

maximum

LAY

- ‘;{:-O"", e X y
Ny &
z‘ﬁ"ﬁw// local
absolute “@,’7 minimum

minimum %

Theorem

If £ has a local maximum or minimum at (a, b) and the first-order partial
derivatives of f exist there, then f,.(a,b) = 0 and f,(a,b) = 0.

Proof

Let g(x) = f(x, b). If f has a local maximum (or minimum) at (a, b), then g has a
local maximum (or minimum) at a, so g(a) = 0 by Fermat’s Theorem. But

g'(a) = f,(x,b) and so f,(a,b) = 0. Similarly, by applying Fermat’s Theorem to
the function G(y) = f(a,y), we obtain f,(a,b) = 0.

Critical / Stationary Point of a Function

A point (a, b) is called a critical point (or stationary point) of f if f,.(a,b) = 0 and
fy(a,b) = 0, or if one of these partial derivatives does not exist.

Remark

If has a local maximum or minimum at , then is a critical point of . However, as in
single-variable calculus, not all critical points give rise to maxima or minima. At a
critical point, a function could have a local maximum or a local minimum or
neither.
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Saddle Point of a Function

Saddle points in a multivariable function are those critical points where the
function attains neither a local maximum value nor a local minimum value. Saddle
points mostly occur in multivariable functions. For example (0,0) is a saddle point
ofz= y? —x2,

Example
Find the critical points of

f(x, y=x"+y " —2x— 6y + 14

Solution
Let f(x, y) = x* + y* — 2x — 6y + 14. Then

f(x, y) =2x — 2 t(x,y)=2y—6
These partial derivatives are equal to 0 when x = 1 and y = 3, so the only critical point
is (1, 3). By completing the square, we find that

fxy) =4+ (x— 1"+ (y—3)?

Since (x — 1)? = 0 and (y — 3)* = 0, we have f(x, y) = 4 for all values of xand y.
Therefore £(1, 3) = 4 is a local minimum, and in fact it is the absolute minimum of £,

This can be confirmed geometrically from the graph of f which is the elliptic
paraboloid with vertex (1,3,4) shown in Figure.
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Example

Find the extreme values of f(x, y) = y* — x°
Solution
Since £, = —2xand £, = 2y, the only critical point is (0, 0). Notice that

for points on the x-axis we have y = 0, so f(x, y) = —x* < 0 (if x # 0). However, for
points on the y-axis we have x = 0, so f(x, y) = y* > 0 (if y # 0). Thus every disk
with center (0, 0) contains points where £ takes positive values as well as points where
f takes negative values. Therefore £(0, 0) = 0 can’t be an extreme value for £, so f has
no extreme value. [
Second Derivatives Test

Suppose the second partial derivatives of f are continuous on a disk with center
(a,b), and suppose that f,(a,b) = 0 and f, (a,b) = O[that is, (a, b) is a critical
point of f]. Let

D = D(a, b) = fi(a, b) £,,(a, b) — [ f,(a, b)]°

(@) If D> 0and f.(a b) > 0, then f(a, b) is a local minimum.
(b) If D> 0and £, a b) < 0, then f(a, b) is a local maximum.
(c) If D < 0, then f(a, b) is not a local maximum or minimum.

Remark

= In case (c) the point (a, b) is called a saddle point of f and the graph of f
crosses its tangent plane at (a, b).

» |f D =0, the test gives no information: f could have a local maximum or
local minimum at (a, b), or(a, b) could be a saddle point of f.

» To remember the formula for D, it’s helpful to write it as a determinant:

fe £y
D=|"7" "|=fufy— (£,)
by by ’ ’
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Theorem

Suppose the second partial derivatives of f are continuous on a disk with center
(a,b), and suppose that f,(a,b) = 0 and f,,(a,b) = O[that is, (a, b) is a critical
point of f]. Let

D= D(a, b) = f(a b) f,,(a, b) — [ £,(a b

If D> 0and £,(a b) > 0, then f(a, b) is a local minimum.
Proof

We compute the second-order directional derivative of f
in the direction of u = (A, k). The first-order derivative is given by Theorem 14.6.3:

Duf=£th+ £k

Applying this theorem a second time, we have

DZf= DuDuf) =~ (Du DB + — (Du D)k
0x ay

= (fuh + £ 0D + (£,h + £,00k

= f;x}}fz + Zﬁ}vb]f + f)‘,-ykz (by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

fy ) K

ITU_ Duzf:ﬁx(b-l— ;}]() -I—f.—(f;xij_ xi)
We are given that f£,(a, b) > 0and D(a, b) > 0. But fi,and D = £, £, — f;ﬁ, are con-
tinuous functions, so there is a disk B with center (a, b) and radius 8 > 0 such that
fo(x, y) > 0 and D(x, y) > 0 whenever (x, y) is in B. Therefore, by looking at Equation
10, we see that D; f(x, y) > 0 whenever (x, y) is in B. This means that if C is the curve
obtained by intersecting the graph of f with the vertical plane through P(a, b, f(a, b)) in
the direction of u, then C is concave upward on an interval of length 24. This is true in
the direction of every vector u, so if we restrict (x, y) to lie in B, the graph of f lies above
its horizontal tangent plane at P. Thus f(x, y) = f(a, b) whenever (x, y) is in B. This
shows that f(a, b) is a local minimum. [ |
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Example
Find the local maximum and minimum values and saddle points of

flx, py=x"*"+y —4xy+ 1

Solution
We first locate the critical points:
f,=4x’ — 4y f, =4y’ — 4x

Setting these partial derivatives equal to O, we obtain the equations
¥ —y=0 and y'—x=0

To solve these equations we substitute y = x3 from the first equation into the
second one. This gives

0=x"—-x=x(*-1D=x(x*-1Dx*+ 1) =x(x* - DX*+ D(x*+ 1)
so there are three real roots: x = 0, 1, —1. The three critical points are (0, 0), (1, 1),
and (—1, —1).

Next we calculate the second partial derivatives and : D(X, y):

fr= 1242 £, = —14 £, =12y
D(x,y) = fufy — (£, = 144x25* — 16

Since D(0, 0) = —16 < 0, it follows from case (c) of the Second Derivatives Test that
the origin is a saddle point; that is, £ has no local maximum or minimum at (0, 0).
Since D(1,1) = 128 > 0 and f£,(1, 1) = 12 > 0, we see from case (a) of the test that
f(1,1) = —1is a local minimum. Similarly, we have D(—1, —1) = 128 > 0 and
fio(—1, —1) =12 > 0,s0 f(—1, —1) = —1 is also a local minimum.

The graph of f is shown in Figure

¥

Visit us @ YouTube “Learning with Usman Hamid”



58

Example
Find and classify the critical points of the function

f(x, y) = 10x°y — 5x° — 4y* — x* — 2y*
Also find the highest point on the graph of f.

Solution
The first-order partial derivatives are

f,=20xy — 10x — 4x° f,=10x* — 8y — 8y°
So to find the critical points we need to solve the equations
2x(10y — 5 — 2x*) =0
5x* — 4y —4y° =0

(= [=]

From Equation 4 we see that either

x=0 or 10y—5-2x*=0

In the first case (x = 0), Equation 5 becomes —4y(1 + y*) = 0, so y = 0 and we
have the critical point (0, 0).
In the second case (10y — 5 — 2x* = 0), we get

6] x* =5y — 2.5

and, putting this in Equation 5, we have 25y — 12.5 — 4y — 4y° = 0. So we have to
solve the cubic equation

7] 4y  — 21y + 125 =0
Using a graphing calculator or computer to graph the function

g(y) = 4y* — 21y + 125

as in Figure 6, we see that Equation 7 has three real roots. By zooming in, we can find
the roots to four decimal places:

y = —2.5452 y = 0.6468 y = 1.8984

(Alternatively, we could have used Newton’s method or a rootfinder to locate these
roots.) From Equation 6, the corresponding x-values are given by

x= by — 2.5
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If y = —2.5452, then x has no corresponding real values. If y = 0.6468, then

x = +0.8567. If y = 1.8984, then x = +2.6442. So we have a total of five critical
points, which are analyzed in the following chart. All quantities are rounded to two
decimal places.

Critical point Value of f fix D Conclusion
(0, 0) 0.00 —-10.00 80.00 local maximum

(*+2.64, 1.90) 8.50 —55.93 2488.72 local maximum

(+0.86, 0.65) —1.48 —5.87 —187.64 saddle point

Figures 7 and 8 give two views of the graph of f and we see that the surface opens
downward. [This can also be seen from the expression for f(x, y): The dominant terms
are —x* — 2y* when | x| and | y| are large.] Comparing the values of {at its local maxi-
mum points, we see that the absolute maximum value of fis f(+2.64, 1.90) = 8.50. In
other words, the highest points on the graph of f are (£2.64, 1.90, 8.50).

ra

-3 — \\__// 2.7

FIGURE 6

FIGURE 7 FIGURE 8

Visit us @ YouTube “Learning with Usman Hamid”



60

Example
Find the shortest distance from the point (1,0, —2) to the plane
x+2y+z=14
Solution
The distance from any point (x, y, z) to the point (1, 0, —2) is

d=(x— 1)+ y2 + (z + 2)

but if (x, y, z) lies on the plane x + 2y + z = 4, thenz = 4 — x — 2y and so we have
d=(x—1)?%+ y2 + (6 — x — 2y)?. We can minimize d by minimizing the simpler
expression

d=fxp)=Kx—-1)*+y* "+ (6 —x— 2y
By solving the equations
f=2x—-1)—-26-x—-2y)=4x+4y—14=0
f,=2y—46 —x—2y)=4x+ 10y — 24 =10
we find that the only critical point is (4 %). Since £, = 4, f,y =4, and £, = 10, we
have D(x, y) = fi £,y — (£;)* = 24 > 0 and £, > 0, so by the Second Derivatives Tesi
f has a local minimum at (%, %) Intuitively, we can see that this local minimum is actu-

ally an absolute minimum because there must be a point on the given plane that is clos-
estto (1,0, —2). If x= % and y = 3. then

d= a0y 6 k2 = O O (F = e

The shortest distance from (1, 0, —2) to the plane x + 2y + z = 4 is 26, [ |

Example

A rectangular box without a lid is to be made from 12 m? of cardboard.
Find the maximum volume of such a box.

Solution

Let the length, width, and height of the box (in meters) be ¥, y, and z, as shown
in Figure 10. Then the volume of the box is

V=xy

We can express V as a function of just two variables x and y by using the fact that the
area of the four sides and the bottom of the box is

2xz + 2yz + xy=12
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Solving this equation for z, we get z = (12 — xy)/[2(x + y)], so the expression for V
becomes

12— xy  12xy— x'y
V_Xy2(x+y) a 2(x + y)

We compute the partial derivatives:

vV _ y(12 — 2xy — x°) oV _ x*(12 — 2xy — y*)
oX 2(x + y)? ay 2(x + y)?

If Vis a maximum, then 9 V/ox= g V/dy = 0, but x = 0 or y = 0 gives V= 0, so we
must solve the equations

12 -2xy—x*=0 12 —2xy—y*=0

These imply that x* = y* and so x = y. (Note that x and y must both be positive in this
problem.) If we put x = y in either equation we get 12 — 3x* = 0, which gives x = 2,
y=2adz= (12 —2-2)/[22 + 2)] = 1.

We could use the Second Derivatives Test to show that this gives a local maximum
of V, or we could simply argue from the physical nature of this problem that there must
be an absolute maximum volume, which has to occur at a critical point of V, so it must
occur when x= 2, y=2,z= 1.Then V=2 -2 - 1 = 4, so the maximum volume of
the box is 4 m*. [

Closed Set

A closed set in R? is one that contains all its boundary points.

Bounded Set

A bounded set in R? is one that is contained within some disk. In other words, it is
finite in extent.

Extreme Value Theorem for Functions of Two Variables

If £ is continuous on a
closed, bounded set D in R? then f attains an absolute maximum value f(x;, y1)

and an absolute minimum value f(x,, y») at some points (xi, y1) and (x,, y2) in D.

Procedure

To find the absolute maximum and minimum values of a continuous function
fon a closed, bounded set D:

1. Find the values of f at the critical points of fin D.
2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.
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Example
Find the absolute maximum and minimum values of the function
f(x, y) = x* — 2xy + 2yontherectangle D= {(x, y) | 0 < x< 3,0 < y=< 2}.

Solution
Since fis a polynomial, it is continuous on the closed, bounded rectangle D,
so Theorem 8 tells us there is both an absolute maximum and an absolute minimum.
According to step 1 in [9], we first find the critical points. These occur when

f=2x—2y=0 £=-2x+2=0

so the only critical point is (1, 1), and the value of f there is (1, 1) = 1.
In step 2 we look at the values of £ on the boundary of D, which consists of the four
line segments L, L,, L3, L, shown in Figure 12. On L; we have y = 0 and

f(x,0) = x* 0<x<3

This is an increasing function of x, so its minimum value is £(0, 0) = 0 and its maxi-
mum value is f(3,0) = 9. On L; we have x = 3 and

f3, ) =9 — 4y 0=sy=<2

This is a decreasing function of y, so its maximum value is f(3, 0) = 9 and its minimum
value is £(3, 2) = 1. On L; we have y = 2 and

f(x,2)=x*—4x+ 4 0<x<3

By the methods of Chapter 3, or simply by observing that f(x, 2) = (x — 2)? we see
that the minimum value of this function is (2, 2) = 0 and the maximum value is
f(0, 2) = 4. Finally, on L, we have x = 0 and

f(0, y) = 2y 0sy=<2

with maximum value (0, 2) = 4 and minimum value f(0, 0) = 0. Thus, on the bound-
ary, the minimum value of fis 0 and the maximum is 9.

In step 3 we compare these values with the value £(1, 1) = 1 at the critical point and
conclude that the absolute maximum value of fon Dis £(3, 0) = 9 and the absolute
minimum value is £(0, 0) = £(2, 2) = 0. Figure 13 shows the graph of £ [ ]
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YV
L, (2,2)
0,2) - (3,2)
L, L,
(0,0) L, (3.0) x
FIGURE 13
FIGURE 12 fo,y)=x>—2xy+2y

Lagrange Multipliers

In mathematical optimization, the method of Lagrange multipliers is a strategy
for finding the local maxima and minima of a function subject to equation
constraints (i.e., subject to the condition that one or more equations have to be
satisfied exactly by the chosen values of the variables). It is named after the
mathematician Joseph-Louis Lagrange.

The basic idea is to convert a constrained problem into a form such that
the derivative test of an unconstrained problem can still be applied.

If we have the following equation

vf(X[], Yo, Eu) = A vg(i’u, Yo, ZD)

Then the number A in Equation is called a Lagrange multiplier.

Method of Lagrange Multipliers

- ] To find the maximum and minimum values of
f(x, , z) subject to the constraint g(x, y, z) = k [assuming that these exireme val-
ues exist and Vg # 0 on the surface g(x, y, z) = 4]:

(a) Find all values of x, y, z, and A such that
Vix y,z) = AVy(x, y, 2)
and g(x, y,z) = k

(b) Evaluate f at all the points (x, y, z) that result from step (a). The largest of
these values is the maximum value of f: the smallest is the minimum value

of f.
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Example

A rectangular box without a lid is to be made from 12 m? of cardboard.
Find the maximum volume of such a box.

Solution

Let x, y, and z be the length, width, and height, respectively, of the box in meters.
Then we wish to maximize

V = Xxyz
subject to the constraint

g(x, y,z) = 2xz + 2yz + xy = 12

Using the method of Lagrange multipliers, we look for values of x, y; z, and A such that
VV= AVgand g(x, y, z) = 12. This gives the equations

VX’ — )‘Lgx
Vy = Agy
V. = Ag.

2xz + 2yz + xy =12
which become

2 yz = M2z + y)
3 xz = N2z + x)
4 xy = A2x + 2y)
5] 2xz + 2yz + xy = 12

There are no general rules for solving systems of equations. Sometimes some
ingenuity is required. In the present example you might notice that if we multiply
(2) by x, (3) by y, and (4) by z, then the left sides of these equations will be
identical. Doing this, we have
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(6] xyz = A(2xz + xy)
[7] xyz = A2yz + xy)
(8] xyz = M2xz + 2yz)

We observe that A # 0 because A = 0 would imply yz = xz = xy = 0 from [2], [3],
and [4] and this would contradict [5]. Therefore, from [6] and [7], we have

2xz + xy=2yz + xy

which gives xz = yz. But z # 0 (since z = 0 would give V= 0), so x = y. From

and [8] we have
2yz + xy=2xz + 2yz

which gives 2.xz = xyand so (since x # 0) y = 2z. If we now put x = y = 2zin [5],

we get
47° + 47 + 478 = 12

Since x, y, and z are all positive, we therefore have z = 1 and so x = 2 and y = 2.
Example

Find the extreme values of the function f(x,y) = x? + 2y? on the circle
x2+y2=1.

Solution

We are asked for the extreme values of f subject to the constraint
g(x, y) = x* + y* = 1. Using Lagrange multipliers, we solve the equations V= A Vg
and g(x, y) = 1, which can be written as

= Agx fy = Agy gx. y) =1
or as
9] 2x = 2xA
[10] 4y = 2y\
[11] X+ y=1

From [9] we have x = 0 or A = 1. If x = 0, then [11] gives y = =1. If A = 1, then
y = 0 from [10], so then [11] gives x = = 1. Therefore f has possible extreme values
at the points (0, 1), (0, —1), (1, 0), and (—1, 0). Evaluating f at these four points, we

find that
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£(0,1) =2 £(0, —1) =2 f(1,0)=1 f(—-1,0)=1

Therefore the maximum value of £ on the circle x* + y* = 1 is £(0, £1) = 2 and the
minimum value is f(+1, 0) = 1. Checking with Figure 2, we see that these values look

reasonable. [

Example
Find the extreme values of the function f(x,y) = x? + 2y? on the circle

x2+y2=1.

Solution

According to the procedure, we compare the values of f at the critical points with
values at the points on the boundary. Since f,, = 2x and f,, = 4y, te only critical
point is (0,0). We compare the value of f at that point with the extreme values on
the boundary;

£(0,0) =10 f(£1,0) =1 £(0, 1) = 2

Therefore the maximum value of f on the disk x* + y* < 1is f(0, =1) = 2 and the
minimum value is (0, 0) = 0. |
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Example

Find the points on the sphere x? + y? + z? = 4 that are closest to and farthest
from the point (3,1, —1).

Solution

The distance from a point (x, y, z) to the point (3, 1, —1) is

d=J(x—32+ (y— )2+ (z + 1)

but the algebra is simpler if we instead maximize and minimize the square of the
distance:

d=fxy2)=x—-3°+(y— 17+ (z+ 1)}
The constraint is that the point (x, y, z) lies on the sphere, that is,
gx, yz)=x*+y* +z2=14

According to the method of Lagrange multipliers, we solve V= A Vg, g = 4. This gives

12] 2(x — 3) = 2x)
13] 2(y — 1) = 2y
14] 2z + 1) = 2zA
[15] ¥+ 4=

The simplest way to solve these equations is to solve for x, y, and z in terms of A from
[12], [13], and [14], and then substitute these values into [15]. From [12] we have

3

— 3 =1x\ 1—-))=3 =
X X. or x( ) or X Y

[Note that 1 — A # 0 because A = 1 is impossible from [12].] Similarly, 13] and [14] give

F=1 0 T
Therefore, from [15], we have
32 12 (_1)2

=4

L—AF (1= (A—AP
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which gives (1 — A)* = % 1 — A= %11/2, s0

V11
2

A=1=

These values of A then give the corresponding points (x, y, z):

6 2 2 q 6 2 2
Jjirym i) NIRRT
It's easy to see that f has a smaller value at the first of these points, so the closest point
is (6/4/11, 2/y/11, —2/4/11) and the farthest is (—6/y/11, —2/y/11, 2//11). .

Lagrange Multipliers (Two Constraints Form)

Y",f(z‘fm}"ﬂ, Z9) = AVQ(X:J,)’D, z0) + ﬁLVb(Xn,yn, Zp)

In this case Lagrange’s method is to look for extreme values by solving five
equations in the five unknowns X, y, z, A, and u. These equations are obtained by
writing above Equation in terms of its components and using the constraint

equations:
fy= Agx + ph
fy= Agy + phy
£=Ag. + ph.
g(x, y,z) = k
hx, y z)=c
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Example

Find the maximum value of the function f(x, y, z) = x + 2y + 3z on the
curve of intersection of the plane x — y + z = 1 and the cylinder x* + y* = 1.

Solution

We maximize the function f(x, y, z) = x + 2y + 3z subject to the constraints
g(x, y,z) = x — y+ z= land h(x, y, z) = x* + y* = 1. The Lagrange condition is
V= AVg + wVh, so we solve the equations

17 Il =X+ 2xu
2=—A+2yu
3=A

x—y+tz=1
X+ =1

= 8 [3] [3] =

21

Putting A = 3 [from [19]] in [17], we get 2xu = —2, so x = —1/u. Similarly, [I8] gives
y = 5/(2u). Substitution in [21] then gives

and so u? =%, u = +./29/2. Then x = ¥2/,/29, y = +5/,/29, and, from [20],
z=1—-x+y=1=%7/y29. The corresponding values of f are

;%”(i%)ﬁ(u%):srm

Therefore the maximum value of f on the given curve is 3 + /29. -
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