
CHAPTER ONE

e.g N= \1,2,3-- } W= \09192-- 7 finite or infinite Z=909±19+7-7 > Collection well-defined and distinct aex only Denoted 七女X Objects one Sepetition Se. A,B,X,Y called objects Singleton allowed.

CHAPTER ONE

we use chass word for set of sets

CHAPTER ONE

CHAPTER ONE

APTER ONE

$$R = \{(a,b), a \in D_{R}, b \in C(a,a), (a,a), (a,$$

Domain and

R* CAXB

पुरुप selatea

29

then writes D_R=

CHAPTER ONE
$$R = \{(191)(2,2)(2,3)(3,2)\}$$

(ana) CR EQUIVALENCE **RELATIONS** If (anb)ER Relation then Those proporties (bga) e R 1) Reflexive property v If (a,b) 2 (b)c) 2) Symmetric Property Tagnsitive

CHAPTER ONE

Prove that $A = \{2, 3, 4, 5\}$ is not a subset of $B = \{x : x \text{ is even}\}.$

CHAPTER ONE

Prove Theorem 1.1 (iii): If $A \subset B$ and $B \subset C$ then $A \subset C$.

CHAPTER ONE

Prove: If A is a subset of the null set \emptyset , then $A = \emptyset$.

Here is a subset of the null set
$$\emptyset$$
, then $A = \emptyset$.

Here $A = \emptyset$ is a subset of every set.

The means $A = \emptyset$ and $A = \emptyset$.

As $A = \emptyset$ and $A = \emptyset$.

The is a subset of every set.

As $A = \emptyset$ and $A = \emptyset$.

CHAPTER ONE

Find the power set $\mathcal{P}(S)$ of the set $S = \{1, 2, 3\}$.

CHAPTER ONE

```
opelations on
Let U = \{1, 2, ..., 8, 9\}, A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\} and C = \{3, 4, 5, 6\}.
                                                          a Set!
Find: (i) A^c, (ii) (A \cap C)^c, (iii) B \setminus C, (iv) (A \cup B)^c.
(i) A° = U-A= [192.-9] - [192,3,4]
A^{c} = \{5,6,7,8,9\}
(ii)(Anc)^{c} = \{1,4\}
             (Anc) = U - (Anc) = [192,95,6,798,9]
(iii) B/C = 52983
(iv) AUB= \(\frac{1}{492}, \frac{3}{3}, \frac{496}{9638} = \(\frac{5}{597}, \frac{99}{99}\)
```

CHAPTER ONE

Prove De Morgan's Law:
$$(A \cup B)^c = A^c \cap B^c$$
.

LHS:

$$(A \cup B)^Q = \{x : x \in (A \cup B)^C\}$$

$$= \{x : x \notin A \cup B\}$$

$$= \{x : x \notin A \cap A \cap B^C\}$$

$$= \{x : x \in A^C \cap B^C\}$$

$$= \{x : x \in A^C \cap B^C\}$$

$$= A^C \cap B^C$$

CHAPTER ONE

Let $A = \{a, b\}, B = \{2, 3\}$ and $C = \{3, 4\}$. Find: (i) $A \times (B \cup C)$,

$$BUC = \{ 29314 \}$$

 $A \times (BUC) = \{ 9, b \} \times \{ 2, 3, 4 \}$
 $= \{ (992) (994) (692) (693)$
 $(694) \}$

CHAPTER ONE

Consider the relation $R = \{\langle 1,1 \rangle, \langle 2,3 \rangle, \langle 3,2 \rangle\}$ in $X = \{1,2,3\}$. Determine whether or not R is (i) reflexive, (ii) symmetric, (iii) transitive.