1. Number Systems and Errors

Round-Off Errors and Computer Arithmetic

- Definition: Round-off error occurs when a number is approximated due to limitations in computer representation.
- Explanation: Computers store numbers in finite precision, leading to small discrepancies.
- Example: Storing π as 3.1416 instead of its infinite decimal expansion.

Error Estimation

- Definition: The process of determining the error in numerical computations.
- Explanation: Errors can be absolute ($|x_{true} x_{approx}|$) or relative ($\frac{|x_{true} x_{approx}|}{|x_{true}|}$).
- Example: If true value = 2.345 and approximation = 2.34, then absolute error = 0.005.

Floating-Point Arithmetic

- Definition: Representation of real numbers in a finite number of bits using scientific notation.
- Explanation: A number is stored as $\pm m imes 10^e$, where m is the mantissa and e is the exponent.
- Example: 0.00123 in floating-point format could be stored as 1.23×10^{-3} .

2. Solution of Non-Linear Equations

Iterative Methods and Convergence

- . Definition: Iterative methods approximate solutions using successive refinements.
- Explanation: Convergence occurs when iterations produce values closer to the true solution.

1. Bisection Method

- Explanation: A root-finding method that repeatedly bisects an interval.
- Example: Find root of $f(x) = x^3 x 2$ in [1,2] by halving the interval.

2. Fixed-Point Iteration Method

- Explanation: Transforms an equation into x=g(x) and iterates using $x_{n+1}=g(x_n)$.
- Example: Solve $x^3 x 1 = 0$ using $x = \sqrt[3]{x+1}$.

2. Stirling's Formula

Explanation: A symmetric interpolation formula for equal intervals.

Explanation: Improves accuracy by averaging differences.

4. Bessel's Formul

Explanation: Used when interpolation points are equidistant.

3. Regula Falsi (False Position) Method

- Explanation: Uses a weighted average of function values to find the root.
- Example: Find the root of $f(x)=x^2-3$ in [1,2] using the formula:

$$x_{new} = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

4. Secant Method

- Explanation: Similar to Regula Falsi but does not require sign change.
- Example: Solve $f(x)=e^x-3x$ using two initial approximations.

5. Newton's Method

- Explanation: Uses the formula $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.
- Example: Solve $f(x) = x^2 2$ using $x_0 = 1.5$.

3. Systems of Linear Equations

Direct Methods

. Definition: Solve equations in a finite number of steps.

1. Gaussian Elimination Method

- Explanation: Converts the system into an upper triangular matrix and solves by backsubstitution.
- Example: Solve

$$\begin{cases} 2x + 3y = 8\\ 4x - y = 3 \end{cases}$$

2. Gauss-Jordan Method

Explanation: Converts a system to reduced row-echelon form.

3. Matrix Inversion Method

• Explanation: If AX = B, solve using $X = A^{-1}B$.

4. Factorization (Doolittle, Crout, and Cholesky) Method

Explanation: Decomposes a matrix into lower and upper triangular matrices.

Iterative Methods and Convergence

Definition: Approximate solutions iteratively.

1. Gauss-Jacobi Method

Explanation: Solves each equation for one variable at a time.

2. Gauss-Seidel Method

. Explanation: Uses updated values within each iteration for faster convergence.

Ill-Conditioned System and Condition Number

. Definition: A system where small changes in input cause large changes in the output.

Eigenvalues and Eigenvectors

• **Definition:** If $Ax=\lambda x$, then λ is an eigenvalue and x is an eigenvector.

Power and Rayleigh Quotient Method

 Explanation: Power method finds the dominant eigenvalue, while Rayleigh quotient refines approximations.

4. Interpolation and Polynomial Approximation

Difference Operators

 Definition: Operators like forward (Δ), backward (∇), and central differences help in numerical differentiation.

Interpolation with Unequal Intervals

Definition: Estimating values between data points when intervals are not uniform.

1. Lagrange's Interpolation Formula

- Explanation: Uses Lagrange polynomials to estimate unknown values.
- Example: Given (1, 2), (3, 10), (4, 20), estimate f(2).

2. Newton's Divided Difference Formula

• Explanation: Uses divided differences to construct interpolation polynomials.

Interpolation with Equal Intervals

- · Definition: Estimating values when intervals are uniform.
- 1. Gregory Newton Forward/Backward Interpolation
- Explanation: Uses forward or backward differences to estimate values.

2. Error in Polynomial Interpolation

· Explanation: Given by

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x-x_i)$$

Central Difference Interpolation Formulae

- · Definition: Methods for interpolation using central differences.
- 1. Gauss's Forward/Backward Interpolation
- . Explanation: Uses symmetric differences around a central value.