

 $f(\phi) = \phi$ $f'(Y) = \chi$ f'(x) = q, ξr ollowing topologies on $X = \{a, b, c, d\}$ and $Y = \{x, y, z, w\}$ respectively.

CHAPTER 7

Example 1.1: Consider the following topologies on $X = \{a, b, c, d\}$ and $Y = \{x, y, z, w\}$ respectively:

$$\mathcal{T} = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}, \mathcal{T}^* = \{Y, \emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z, w\}\}$$

Also consider the functions $f: X \to Y$ and $g: X \to Y$ defined by the diagrams below:

The function f is continuous since the inverse of each member of the topology \mathcal{T}^* on Y is a member of the topology \mathcal{T} on X. The function g is not continuous since $\{y, z, w\} \in \mathcal{T}^*$, i.e. is an open subset of Y, but its inverse image $g^{-1}[\{y, z, w\}] = \{c, d\}$ is not an open subset of X, i.e. does not belong to \mathcal{T} .

CHAPTER 7

Example 1.24 Consider any discrete space (X, \mathcal{D}) and any topological space (Y, \mathcal{T}) . Then every function $f: X \to Y$ is $\mathcal{D}\text{-}\mathcal{T}$ continuous. For if H is any open subset of Y, its inverse $f^{-1}[H]$ is an open subset of X since every subset of a discrete space is open.

AND IS an open subset of A since every subset of a discrete space is open.

CHAPTER 7

Example 1.3: Let $f: X \to Y$ where X and Y are topological spaces, and let \mathcal{B} be a base for the topology on Y. Suppose for each member $B \in \mathcal{B}$, $f^{-1}[B]$ is an open subset of X; then f is a continuous function. For let H be an open subset of Y; then $H = \bigcup_i B_i$, a union of members of \mathcal{B} . But

$$f^{-1}[H] = f^{-1}[\cup_i B_i] = \cup_i f^{-1}[B_i]$$

and each $f^{-1}[B_i]$ is open by hypothesis; hence $f^{-1}[H]$ is the union of open sets and is therefore open. Accordingly, f is continuous.

(Xit) f (Xit) > B (opening)

HEB

CHAPTER 7

Proposition 7.1: A function $f: X \to Y$ is continuous iff the inverse of each member of a base \mathcal{B} for Y is an open subset of X.

senelates

Subbase

CHAPTER 7

Here Subbase

Continous

func.

CHAPTER 7

Example 1.4:

The projection mappings from the plane \mathbf{R}^2 into the line \mathbf{R} are both continuous relative to the usual topologies. Consider, for example, the projection $\pi: \mathbf{R}^2 \to \mathbf{R}$ defined by $\pi(\langle x, y \rangle) = y$. Then the inverse of any open interval (a, b) is an infinite open strip as illustrated below:

 $\pi^{-1}[(a,b)]$ is shaded

Hence by Proposition 7.1, the inverse of every open subset of **R** is open in \mathbb{R}^2 , i.e.

Honce by Proposition 7.1, the inverse of every open subset of **R** is open in **R**², i.e.

CHAPTER 7 xample 1.5:

The absolute value function f on \mathbf{R} , i.e. f(x) = |x| for $x \in \mathbf{R}$, is continuous. For if A = (a, b) is an open interval in **R**, then

$$f^{-1}[A] = \begin{cases} (-b, b) & \text{if } a < b \le 0 \\ (-b, -a) \cup (a, b) & \text{if } 0 \le a < b \end{cases}$$

as illustrated below. In each case $f^{-1}[A]$ is open; hence f is continuous.

$$f^{-1}[A] = \emptyset$$

$$f^{-1}[A] = (-b, b)$$

$$f^{-1}[A] = (-b, -a) \cup (a, b)$$

$$f^{-1}[A] = \emptyset$$

$$f^{-1}[A] = (-b, b)$$

$$f^{-1}[A] = (-b, -a) \cup (a, b)$$

CHAPTER 7

Theorem 7.3: A function $f: X \to Y$ is continuous if and only if the inverse image of every closed subset of Y is a closed subset of X.

