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Congider the four intervals [e, b, (e,b), {a,b] and [a,b) whose endpoints are a

and #. The interior of each is the open interval (o, b) and the boundary of ecach
is the set of endpoints, i.e. {a, b}.
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Example 5.2: Consider the topology

T — :‘Y" '-"IF :ﬂlJiI 'i:.cr “F:r {ﬂ: C, ﬂTrI-. ‘:'5, o, I'.'E, £ :}

\ @ on X = {a,b,¢,d,e} and the subset A = {b,¢,d} of X. The points ¢ and d are

each ‘nlerior points of A since
e, d/€ {ed) C A

C/ where {e,dY i3 an open set/ The point b A As not an interior point of /A;
so /int (AY = {e/d}. Only/the noint /a € X is/exterior to 2, i.el intelior to the

complement A7 = {a, e} /of A hende int(Ac)/= {a} Accordinzly the boundary
.ﬂf A congistg 4f the I'“:'lini‘ﬁ hasd e, 1.6, h ‘-‘1 = -”'r:_ n‘-']-.
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Consider the set @ of rational numbers. Since every open subset of R contains

both rational and irrational points, there are no interior or exterior points of Q:
g0 intiQ) = & and int(Q%) = (). Hence the boundary of Q is the entire set of
real numbers, 1.e. bhiQ) = R.
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2. Let A be a non-empty proper subset of an indiscrete space X,

exterior and boundary of 4.

(5D = ¥ =907

Find the interior,
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2. Let A be a non-empty proper subset of an indiscrete space X. Find the interior,
exterior and boundary of A.

Solution:
X and 0 are the only open subsets of X Since XM= 4, @@ is the only open subset of 4; hence

H
int (A) = ). Bimilarly, int{A°) = {0, ie. the exterior of 4 is empty. Thus b{4d) = X.
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33. Lel T be the Lopology on R consisling of R, ¢ and all open infinite intervals E, = (a, =)
where o =R Find the interior, exterior and boundary of the closed infinite interval
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33. Lel T be the topelogy on R consisling of R, ¢ and all open infinite intervals E, = (u, =)
where a« € R. Find the interior, exterior and boundary of the closed infinite interval
A = |']"1 sa ).

Solution:

Since the interior of 4 is the largest open subset of A, int{4d) = (7. =). Note that A¢ = [(—=,7T)
containg no open set except (; so int(Ac) = ext(4d) = 0. The boundary consists of those points
which do not belong to int (4) or ext (A); hence b(A) = (—=,T].
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INTERIOR, EXTERIOR, BOUNDARY

75. Let X be a discrete space and let ACX. Find (i) int(A), (i1) ext(A4), and (i) b(A).
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