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HAUSDORFF SPACES

A topological space X is a Hausdorff space or T.-space iff it satisfies the following
axiom:

[T:] Each pair of distinet points «,b € X belong respect

ely to disjoint open sets.
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In other words, there exist open sets (v and H such that

a€G, beH and GNH

Observe that a Hausdorff space is alwaysanT=space.
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Example 2.1: We show that every metric space X is Hausdo y—k‘ &/(’3 \®

Let a,b &€ X be distinct points; hence, by IM,] dia,b) — ¢ = 0. Consider \ z_k \ {)
the open spheres |G = S{a lel and_H — S(b, be), centered at a and_b_respec- y ~
tively, We claim that |G and A are disjoint, For if [p&€ G O H, then dia,p) < i« a
and d{p, b) < Le' hence by the Triangle Inequality,

dla, b) = dia,p) +dip,b) < L+ Le = 32 a 6

But this contradicts the fact that ‘d{a, ) — ¢ Hcncel G and H are disjoint, ie.
a and b belong respectively to the disjoint open spheres G and H. Accordingly, Q_
&(x\6><

X is Hausdorff.
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Theorem 10.3: Every metric space is a Hausdorftf space.
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Example 2.2: Let T be the cofinite topology, i.e. T',-topology, on the real line R. We show that
(R, T} is not Hausdorff. Let G and H be any non-empty T-open sets. Now
G and H are infinite since they are complements of finite sets. If G N H = (),

then (, an infinite set, would be contained in the finite complement of H: hence
G and H are not disjoint. Accordingly, no pair of distinct points in R belongs,
respectively, to disjoint T-open sets. Thus T ,-spaces need not bhe Hausdorff
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As noted previously, [a Ssequence {agas, .0 of points in.a tepelegical space Xeeould,
in general, converge to more than one point in X. This eannot happen ifs X i1s Hausdorft:

Theorem 10.4: If X is a Hausdorff space, then every convergent sequence in X has a

unique limit.

The corniverse of the above theorem is not true unless we add additional conditions.
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The notion of a sequence has been generalized to that of a nef (Moore-Smith (
sequence) and to that of a filfer with the following results: ~
Theorem 10.4A: [ENSasHausdorfispace if and only if every/convergent net in X
X has a unique limit. (
Theorem 10.4B: X is a Hausdorff space if and only if levery convergent. filter >

in X has a unique limit.

The definitions of net and filter and the proofs of the above theorems lie T =
bevond the scope of this text.




