CHAPTER 10

CHAPTER 10

HAUSDORFF SPACES

A topological space X is a *Hausdorff space* or T_2 -space iff it satisfies the following axiom:

[T₂] Each pair of distinct points $a, b \in X$ belong respectively to disjoint open sets.

CHAPTER 10

In other words, there exist open sets G and H such that

$$a \in G$$
, $b \in H$ and $G \cap H = \emptyset$

Observe that a Hausdorff space is always a T_1 -space.

TOPOLOGY PEGNA

DEGUH

d(y,p)<1E
Teviangulal Frequality
d(x,y)<d(x,p)+d(y,i)

CHAPTER 10

Example 2.1:

We show that every metric space X is Hausdorff.

Let $a,b \in X$ be distinct points; hence by $[M_4]$ $d(a,b) = \epsilon > 0$. Consider the open spheres $G = S(a,\frac{1}{3}\epsilon)$ and $H = S(b,\frac{1}{3}\epsilon)$, centered at a and b respectively. We claim that G and H are disjoint. For if $p \in G \cap H$, then $d(a,p) < \frac{1}{3}\epsilon$ and $d(p,b) < \frac{1}{3}\epsilon$; hence by the Triangle Inequality,

$$d(a,b) \leq d(a,p) + d(p,b) < \frac{1}{3} + \frac{1}{3}\epsilon = \frac{2}{3}\epsilon$$

But this contradicts the fact that $d(a, b) = \epsilon$. Hence G and H are disjoint, i.e. a and b belong respectively to the disjoint open spheres G and H. Accordingly, X is Hausdorff.

Let x,y ex Id(x,y)=E>0 Every open Sphere open set. Suppose on conteary

onteasy (X) Gr SIGN LA

 $\frac{2}{3} \in \frac{2}{3}$

GNH+A

CHAPTER 10

Theorem 10.3: Every metric space is a Hausdorff space.

CHAPTER 10

Example 2.2: Let \mathcal{T} be the cofinite topology, i.e. T_1 -topology, on the real line \mathbf{R} . We show that $(\mathbf{R}, \mathcal{T})$ is not Hausdorff. Let G and H be any non-empty \mathcal{T} -open sets. Now G and H are infinite since they are complements of finite sets. If $G \cap H = \emptyset$, then G, an infinite set, would be contained in the finite complement of H; hence G and H are not disjoint. Accordingly, no pair of distinct points in \mathbf{R} belongs, respectively, to disjoint \mathcal{T} -open sets. Thus \mathcal{T}_1 -spaces need not be Hausdorff.

(IR otc) -3 not T2-Spece Suppose on contady (IR, tc) is T2-Spece H set Grand H sit Grand

infinite prinite unite unite inpossible so, erate) is no Ta-space.

CHAPTER 10

Convergent seg. 3 lim an= Olfinite)
n3 00 Light

As noted previously, a sequence $\langle a_1, a_2, \ldots \rangle$ of points in a topological space X could, in general, converge to more than one point in X. This cannot happen if X is Hausdorff: **Theorem 10.4:** If X is a Hausdorff space, then every convergent sequence in X has a unique limit.

The converse of the above theorem is not true unless we add additional conditions.

(Xat) atis a convergent a converges to sequence one point only one.

TOPOLOGY 7 net/fister > converges to

CHAPTER 10

The notion of a sequence has been generalized to that of a net (Moore-Smith Remark: sequence) and to that of a *filter* with the following results:

> **Theorem 10.4A:** X is a Hausdorff space if and only if every convergent net in X has a unique limit.

> X is a Hausdorff space if and only if every convergent filter Theorem 10.4B: in X has a unique limit.

> The definitions of net and filter and the proofs of the above theorems lie beyond the scope of this text.