Search
You can find the results of your search below.
Fulltext results:
- Question 6(i-ix), Exercise 1.4 @math-11-nbf:sol:unit01
- on 6(i)===== Write a given complex number in the algebraic form: $\sqrt{2}\left(\cos 315^{\circ}+i \sin 31... on 6(ii)===== Write a given complex number in the algebraic form: $5\left(\cos 210^{\circ}+i \sin 210^{\cir... n 6(iii)===== Write a given complex number in the algebraic form: $2\left(\cos \dfrac{3 \pi}{2}+i \sin \dfr... on 6(iv)===== Write a given complex number in the algebraic form: $4\left(\cos \dfrac{5 \pi}{6}+i \sin \dfr
- Question 6(x-xvii), Exercise 1.4 @math-11-nbf:sol:unit01
- ion 6(x)===== Write a given complex number in the algebraic form: $7 \sqrt{2}\left(\cos \dfrac{5 \pi}{4}+i ... on 6(xi)===== Write a given complex number in the algebraic form: $10 \sqrt{2}\left(\cos \dfrac{7 \pi}{4}+i... n 6(xii)===== Write a given complex number in the algebraic form: $2\left(\cos\dfrac{5\pi}{2}+i \sin \dfrac... 6(xiii)===== Write a given complex number in the algebraic form: $\dfrac{1}{\sqrt{2}}\left(\cos \dfrac{\pi
- Question 2, Exercise 1.2 @math-11-nbf:sol:unit01
- Islamabad, Pakistan. ====Question 2==== Use the algebraic properties of complex numbers to prove that $$