Question 11, Exercise 1.1

Solutions of Question 11 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Let z1=2i, z2=2+i. Find Re(z1z2¯z1).

Given z1=2i and z2=2+i, then ¯z1=2+i. z1z2=(2i)(2+i)=4+1+2i+2i=3+4i Now we take z1z2¯z1=3+4i2+i=3+4i2+i×2i2i=6+4+8i+3i4+1=2+11i5=25+11i5 Hence, we have Re(z1z2¯z1)=25.

Let z1=2i. Find Im(1z1¯z1).

Given z1=2i, then ¯z1=2+i. z1¯z1=(2i)(2+i)=4+1+2i2i=5. This gives 1z1¯z1=15. Hence, we have Im(1z1¯z1)=0.