Question 6, Exercise 1.2

Solutions of Question 6 of Exercise 1.2 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Show that for all complex numbers z1and z2. Verify that |z1z2|=|z1||z2|.

Suppose z1=a+bi and z2=c+di. Then |z1=a2+b2| and |z2=c2+d2|.
Now L.H.S.=|z1z2|=|(a+bi)(c+di)|=|acbd+(ad+bc)i|=(acbd)2+(ad+bc)2=a2c2+b2d22abcd+a2d2+b2c2+2abcd=a2c2+b2d2+a2d2+b2c2=a2c2+a2d2+b2c2+b2d2=a2(c2+d2)+b2(c2+d2)=(a2+b2)(c2+d2)=a2+b2c2+d2=|z1||z2|=R.H.S.

Alternative Method
We know |z|2=zˉz, so we have |z1z2|2=z1z2¯(z1z2)=z1z2ˉz1ˉz2¯z1z2=ˉz1ˉz2=(z1¯z1)(z2¯z2)=|z1|2|z2|2|z1z2|=|z1||z2| proved.

Show that for all complex numbers z1and z2that |z1z2|=|z1||z2|, where z20

Suppose z=a+bi, then |z|=a2+b2. We take

|1z|=|1a+bi|=|1a+biabiabi|=|abia2(bi)2|=|aa2+b2ba2+b2i|=(aa2+b2)2+(ba2+b2)2=a2(a2+b2)2+b2(a2+b2)2=a2+b2(a2+b2)2=1a2+b2=1a2+b2=1|z||1z|=1|z|(1) Now L.H.S.=|z1z2|=|z11z2|=|z1||1z2|=|z1|1|z2|, by using (1)=|z2||z2|=R.H.S.