Question 6, Exercise 1.2
Solutions of Question 6 of Exercise 1.2 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 6(i)
Show that for all complex numbers z1and z2. Verify that |z1z2|=|z1||z2|.
Solution
Suppose z1=a+bi and z2=c+di. Then |z1=√a2+b2| and |z2=√c2+d2|.
Now
L.H.S.=|z1z2|=|(a+bi)(c+di)|=|ac−bd+(ad+bc)i|=√(ac−bd)2+(ad+bc)2=√a2c2+b2d2−2abcd+a2d2+b2c2+2abcd=√a2c2+b2d2+a2d2+b2c2=√a2c2+a2d2+b2c2+b2d2=√a2(c2+d2)+b2(c2+d2)=√(a2+b2)(c2+d2)=√a2+b2√c2+d2=|z1||z2|=R.H.S.
Alternative Method
We know |z|2=zˉz, so we have
|z1z2|2=z1z2¯(z1z2)=z1z2ˉz1ˉz2∵¯z1z2=ˉz1ˉz2=(z1¯z1)(z2¯z2)=|z1|2|z2|2⇒|z1z2|=|z1||z2|
proved.
Question 6(ii)
Show that for all complex numbers z1and z2that |z1z2|=|z1||z2|, where z2≠0
Solution
Suppose z=a+bi, then |z|=√a2+b2. We take
|1z|=|1a+bi|=|1a+bi⋅a−bia−bi|=|a−bia2−(bi)2|=|aa2+b2−ba2+b2i|=√(aa2+b2)2+(ba2+b2)2=√a2(a2+b2)2+b2(a2+b2)2=√a2+b2(a2+b2)2=√1a2+b2=1√a2+b2=1|z|⟹|1z|=1|z|…(1) Now L.H.S.=|z1z2|=|z1⋅1z2|=|z1||1z2|=|z1|⋅1|z2|, by using (1)=|z2||z2|=R.H.S.
Go To