Question 6, Exercise 1.3
Solutions of Question 6 of Exercise 1.3 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 6(i)
Find the solutions of the equation z4+z2+1=0
Solution
z4+z2+1=0z4+2(12)z2+14−14+1=0(z2+12)2+4−14=0(z2+12)2+34=0(z2+12)2=−34
Take square root on both sides.
(z2+12)=±√−34(z2+12)=±√34iz2=−12±√32iz=(−12±√32i)12
Question 6(ii)
Find the solutions of the equation z3=−8
Solution
z3=−8z3+23=0(z+2)(z2−2z+4)=0∵(a3+b3)=(a+b)(a2−ab+b2)z+2=0z=−2
Now
(z2−2z+4)=0
According to the quadratic formula, we have
a=1,b=−2 and c=4
Quadratic formula is
z=−b±√b2−4ac2az=−(−2)±√(−2)2−4(1)(4)2(1)z=2±√4−162z=2±√−122z=2±2√3i2z=1±√3i
Then
z=−2,1±√3i
Question 6(iii)
Find the solutions of the equation (z−1)3=−1.
Solution
(z−1)3=−1z3−1−3z(z−1)=−1∵(a−b)3=a3−b3−3ab(a−b)z3−1−3z2+3z+1=0z3−3z2+3z=0z(z2−3z+3)=0
z=0 , z2−3z+3=0
z2−3z+3=0
According to the quadratic formula, we have
a=1,b=−3 and c=3
Quadratic formula is
z=−b±√b2−4ac2az=−(−3)±√(−3)2−4(1)(3)2(1)z=3±√6−122z=3±√−62z=3±√6i2
⇒z=0,32±√6i2
Question 6(iv)
Find the solutions of the equation z3=1
Solution
z3=1z3−13=0(z−1)(z2+z+1)=0
(z−1)=0, (z2+z+1)=0
(z−1)=0z=1z2+z+1=0
According to the quadratic formula, we have
a=1,b=1 and c=1
Quadratic formula is
z=−b±√b2−4ac2az=−(1)±√(1)2−4(1)(1)2(1)z=−1±√1−42z=−1±√−32z=−1±√3i2z=1,−12±√3i2
Go To