Question 6, Exercise 1.3

Solutions of Question 6 of Exercise 1.3 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Find the solutions of the equation z4+z2+1=0

z4+z2+1=0z4+2(12)z2+1414+1=0(z2+12)2+414=0(z2+12)2+34=0(z2+12)2=34
Take square root on both sides.
(z2+12)=±34(z2+12)=±34iz2=12±32iz=(12±32i)12

Find the solutions of the equation z3=8

z3=8z3+23=0(z+2)(z22z+4)=0(a3+b3)=(a+b)(a2ab+b2)z+2=0z=2 Now
(z22z+4)=0
According to the quadratic formula, we have
a=1,b=2 and c=4
Quadratic formula is
z=b±b24ac2az=(2)±(2)24(1)(4)2(1)z=2±4162z=2±122z=2±23i2z=1±3i Then
z=2,1±3i

Find the solutions of the equation (z1)3=1.

(z1)3=1z313z(z1)=1(ab)3=a3b33ab(ab)z313z2+3z+1=0z33z2+3z=0z(z23z+3)=0 z=0 , z23z+3=0
z23z+3=0
According to the quadratic formula, we have
a=1,b=3 and c=3
Quadratic formula is
z=b±b24ac2az=(3)±(3)24(1)(3)2(1)z=3±6122z=3±62z=3±6i2 z=0,32±6i2

Find the solutions of the equation z3=1

z3=1z313=0(z1)(z2+z+1)=0
(z1)=0, (z2+z+1)=0
(z1)=0z=1z2+z+1=0 According to the quadratic formula, we have
a=1,b=1 and c=1
Quadratic formula is
z=b±b24ac2az=(1)±(1)24(1)(1)2(1)z=1±142z=1±32z=1±3i2z=1,12±3i2