Question 1, Review Exercise 1
Solutions of Question 1 of Review Exercise 1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 1
Chose the correct option.
i. (2i1+i)2
- (a) i
- (b) 2i
- (c) 1−i
- (d) i+1
(B): 2i
ii. Divide 5+2i4−3i
- (a) −725+2625i
- (b) 54−23i
- (c) 1425+2325i
- (d) 267+237i
(C): 1425+2325i
iii. i57+1i25, when simplified has the value
- (a) 0
- (b) 2i
- (c) −2i
- (d) 2
(A): 0
iv. 1+{i}^{2}+{i}^{4}+{i}^{6}+…+{i}^{2n}$ is
- (a) positive
- (b) negative
- (c) 0
- (d) cannot be determined
(D): cannot be determined
v. If z=x+iy and |z−5iz+5i|=1, then z lies on
- (a) X−axis
- (b) Y−axis
- (c) line y=5
- (d) None of these
(C): y=5
vi. The multiplicative inverse of z=3−2i, is
- (a) 13(3+2i)
- (b) 113(3+2i)
- (c) 113(3−2i)
- (d) 14(3−2i)
(B): 113(3+2i)
vii. If (x+iy)(2−3i)=4+i, then
- (a) x=−1413,y=513
- (b) x=513,y=1413
- (c) x=1413,y=513
- (d) x=513,y=−1413
(B): x=513,y=1413
Go To