Question 1, Review Exercise 1

Solutions of Question 1 of Review Exercise 1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Chose the correct option.

i. (2i1+i)2

  • (a) i
  • (b) 2i
  • (c) 1i
  • (d) i+1
    See Answer
    (B): 2i

ii. Divide 5+2i43i

  • (a) 725+2625i
  • (b) 5423i
  • (c) 1425+2325i
  • (d) 267+237i
    See Answer
    (C): 1425+2325i

iii. i57+1i25, when simplified has the value

  • (a) 0
  • (b) 2i
  • (c) 2i
  • (d) 2
    See Answer
    (A): 0

iv. 1+{i}^{2}+{i}^{4}+{i}^{6}+…+{i}^{2n}$ is

  • (a) positive
  • (b) negative
  • (c) 0
  • (d) cannot be determined
    See Answer
    (D): cannot be determined

v. If z=x+iy and |z5iz+5i|=1, then z lies on

  • (a) Xaxis
  • (b) Yaxis
  • (c) line y=5
  • (d) None of these
    See Answer
    (C): y=5

vi. The multiplicative inverse of z=32i, is

  • (a) 13(3+2i)
  • (b) 113(3+2i)
  • (c) 113(32i)
  • (d) 14(32i)
    See Answer
    (B): 113(3+2i)

vii. If (x+iy)(23i)=4+i, then

  • (a) x=1413,y=513
  • (b) x=513,y=1413
  • (c) x=1413,y=513
  • (d) x=513,y=1413
    See Answer
    (B): x=513,y=1413