Question 4 & 5, Review Exercise 1

Solutions of Question 4 & 5 of Review Exercise 1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If z1=2i,z2=1+i, find |z1+z2+1z1z2+1|.

z1=2i,z2=1+i,z1+z2+1z1z2+1=(2i)+(1+i)+1(2i)(1+i)+1=2i+1+i+12i1i+1=422i=21i=21i×1+i1+i=2(1+i)1+1=2(1+i)2=(1+i) Now
|z1+z2+1z1z2+1|=12+12=2

Find the modulus of 1+i1i1i1+i.

1+i1i1i1+i=(1+i)2(1i)21+1=(1+2i1)(12i1)2=2i+2i2=2i Modulus of 1+i1i1i1+i is
|1+i1i1i1+i|=22|1+i1i1i1+i|=4|1+i1i1i1+i|=2