Question 4 & 5, Review Exercise 1
Solutions of Question 4 & 5 of Review Exercise 1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 4
If z1=2−i,z2=1+i, find |z1+z2+1z1−z2+1|.
Solution
z1=2−i,z2=1+i,z1+z2+1z1−z2+1=(2−i)+(1+i)+1(2−i)−(1+i)+1=2−i+1+i+12−i−1−i+1=42−2i=21−i=21−i×1+i1+i=2(1+i)1+1=2(1+i)2=(1+i)
Now
|z1+z2+1z1−z2+1|=√12+12=√2
Question 5
Find the modulus of 1+i1−i−1−i1+i.
Solution
1+i1−i−1−i1+i=(1+i)2−(1−i)21+1=(1+2i−1)−(1−2i−1)2=2i+2i2=2i
Modulus of 1+i1−i−1−i1+i is
|1+i1−i−1−i1+i|=√22|1+i1−i−1−i1+i|=√4|1+i1−i−1−i1+i|=2
Go To