Question 2, Exercise 10.1

Solutions of Question 2 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Evaluate exactly: sinπ12

Solution

We rewrite π12 as π3π4 and using the identity: sin(αβ)=sinαcosβcosαsin. sin(π3π4)=sinπ3cosπ4cosπ3sinπ4=(32)(12)(12)(12)=322122=6424=624.

Question 2(ii)

Evaluate exactly:tan75

Solution

We rewrite 75 as 45+30 and using the identity:

tan(α+β)=tanα+tanβ1tanαtanβ.tan(45+30)=tan45+tan301tan45tan30.tan(75)=1+131(1)(13)=3+13313=3+131=3+131×3+13+1=(3+1)(3)2122=(3)2+2(1)(3)+(1)231=3+2(3)+12=4+2(3)2=2+(3)

Question 2(iii)

Evaluate exactly:tan105

Solution

We rewrite 105 as 60+45 and using the identity: tan(60+45)=tan60+tan451tan60tan45tan(105)=3+11(3)(1)=3+113=3+113×1+31+3=(1+3)2(1)2(3)2=12+2(1)(3)+(3)213=1+23+32=4+32=23

Question 2(iv)

Evaluate exactly:tan5π12

Solution

We rewrite 5π12 as (2+3)π12 or π6+π4 and using the identity: tan(π6+π4)=tanπ6+tanπ41tanπ6tanπ4tan5π12=13+11(13)(1)=13+1113=1+33313=3+131=3+131×3+13+1=(3+1)2(3)2(1)2=(3)2+2(3)(1)+(1)231=3+23+12=4+232=2+3

Question 2(v)

Evaluate exactly: cos15

Solution

We rewrite 15 as (6045) and using the identity: cos(6045)=cos60cos45+sin60sin45cos15=(12)(12)+(32)(12)=122+322=1+322=2(1+3)2(22)=2+64

Question 2(vi)

Evaluate exactly: sin7π12

Solution

We rewrite 7π12 as (π4+π3) and using the identity: sin(α+β)=sinαcosβ+cosαsinβsin(π4+π3)=sinπ4cosπ3+cosπ4sinπ3sin7π12=1212+1232=122+322=2(1+3)2(22)=2+64

Go to