Question 2, Exercise 10.1
Solutions of Question 2 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 2(i)
Evaluate exactly: sinπ12
Solution
We rewrite π12 as π3−π4 and using the identity: sin(α−β)=sinαcosβ−cosαsin. \begin{align} \Rightarrow \quad \sin \left( \frac{\pi }{3}-\frac{\pi }{4} \right) & =\sin \frac{\pi }{3}\cos \frac{\pi }{4}-\cos \frac{\pi }{3}\sin \frac{\pi }{4} \\ &=\left( \frac{\sqrt{3}}{2} \right)\left( \frac{1}{\sqrt{2}} \right)-\left( \frac{1}{2} \right)\left( \frac{1}{\sqrt{2}} \right) \\ & =\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\\ & =\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4} \\ &=\frac{\sqrt{6}-\sqrt{2}}{4}. \end{align}
Question 2(ii)
Evaluate exactly:tan75∘
Solution
We rewrite 75∘ as 45∘+30∘ and using the identity:
\begin{align}\tan (\alpha +\beta )&=\dfrac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }.\\ \tan (45+30)&=\dfrac{\tan 45+\tan 30}{1-\tan 45\tan 30}.\\ \Rightarrow \,\,\tan (75)&=\dfrac{1+\dfrac{1}{\sqrt{3}}}{1-\left( 1 \right)\left( \dfrac{1}{\sqrt{3}} \right)}\\ &=\dfrac{\dfrac{\sqrt{3}+1}{\sqrt{3}}}{\dfrac{\sqrt{3}-1}{\sqrt{3}}}\\ &=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\\ &=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\times \dfrac{\sqrt{3}+1}{\sqrt{3}+1}\\ &={{\dfrac{\left( \sqrt{3}+1 \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{1}^{2}}}}^{2}}\\ &=\dfrac{{{\left( \sqrt{3} \right)}^{2}}+2\left( 1 \right)\left( \sqrt{3} \right)+{{\left( 1 \right)}^{2}}}{3-1}\\ &=\dfrac{3+2\left( \sqrt{3} \right)+1}{2}\\ &=\dfrac{4+2\left( \sqrt{3} \right)}{2}\\ &=2+\left( \sqrt{3} \right)\end{align}
Question 2(iii)
Evaluate exactly:tan105∘
Solution
We rewrite 105∘ as 60∘+45∘ and using the identity: tan(60∘+45∘)=tan60∘+tan45∘1−tan60∘tan45∘tan(105∘)=√3+11−(√3)(1)=√3+11−√3=√3+11−√3×1+√31+√3=(1+√3)2(1)2−(√3)2=12+2(1)(√3)+(√3)21−3=1+2√3+3−2=4+√3−2=−2−√3
Question 2(iv)
Evaluate exactly:tan5π12
Solution
We rewrite 5π12 as (2+3)π12 or π6+π4 and using the identity: tan(π6+π4)=tanπ6+tanπ41−tanπ6tanπ4tan5π12=1√3+11−(1√3)(1)=1√3+11−1√3=1+√3√3√3−1√3=√3+1√3−1=√3+1√3−1×√3+1√3+1=(√3+1)2(√3)2−(1)2=(√3)2+2(√3)(1)+(1)23−1=3+2√3+12=4+2√32=2+√3
Question 2(v)
Evaluate exactly: cos15∘
Solution
We rewrite 15∘ as (60∘−45∘) and using the identity: cos(60∘−45∘)=cos60∘cos45∘+sin60∘sin45∘cos15∘=(12)(1√2)+(√32)(1√2)=12√2+√32√2=1+√32√2=√2(1+√3)√2(2√2)=√2+√64
Question 2(vi)
Evaluate exactly: sin7π12
Solution
We rewrite 7π12 as (π4+π3) and using the identity: sin(α+β)=sinαcosβ+cosαsinβsin(π4+π3)=sinπ4cosπ3+cosπ4sinπ3sin7π12=1√212+1√2√32=12√2+√32√2=√2(1+√3)√2(2√2)=√2+√64
Go to