Question 2, Exercise 10.1

Solutions of Question 2 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Evaluate exactly: sinπ12

Solution

We rewrite π12 as π3π4 and using the identity: sin(αβ)=sinαcosβcosαsin. \begin{align} \Rightarrow \quad \sin \left( \frac{\pi }{3}-\frac{\pi }{4} \right) & =\sin \frac{\pi }{3}\cos \frac{\pi }{4}-\cos \frac{\pi }{3}\sin \frac{\pi }{4} \\ &=\left( \frac{\sqrt{3}}{2} \right)\left( \frac{1}{\sqrt{2}} \right)-\left( \frac{1}{2} \right)\left( \frac{1}{\sqrt{2}} \right) \\ & =\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}\\ & =\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4} \\ &=\frac{\sqrt{6}-\sqrt{2}}{4}. \end{align}

Question 2(ii)

Evaluate exactly:tan75

Solution

We rewrite 75 as 45+30 and using the identity:

\begin{align}\tan (\alpha +\beta )&=\dfrac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }.\\ \tan (45+30)&=\dfrac{\tan 45+\tan 30}{1-\tan 45\tan 30}.\\ \Rightarrow \,\,\tan (75)&=\dfrac{1+\dfrac{1}{\sqrt{3}}}{1-\left( 1 \right)\left( \dfrac{1}{\sqrt{3}} \right)}\\ &=\dfrac{\dfrac{\sqrt{3}+1}{\sqrt{3}}}{\dfrac{\sqrt{3}-1}{\sqrt{3}}}\\ &=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\\ &=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\times \dfrac{\sqrt{3}+1}{\sqrt{3}+1}\\ &={{\dfrac{\left( \sqrt{3}+1 \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{1}^{2}}}}^{2}}\\ &=\dfrac{{{\left( \sqrt{3} \right)}^{2}}+2\left( 1 \right)\left( \sqrt{3} \right)+{{\left( 1 \right)}^{2}}}{3-1}\\ &=\dfrac{3+2\left( \sqrt{3} \right)+1}{2}\\ &=\dfrac{4+2\left( \sqrt{3} \right)}{2}\\ &=2+\left( \sqrt{3} \right)\end{align}

Question 2(iii)

Evaluate exactly:tan105

Solution

We rewrite 105 as 60+45 and using the identity: tan(60+45)=tan60+tan451tan60tan45tan(105)=3+11(3)(1)=3+113=3+113×1+31+3=(1+3)2(1)2(3)2=12+2(1)(3)+(3)213=1+23+32=4+32=23

Question 2(iv)

Evaluate exactly:tan5π12

Solution

We rewrite 5π12 as (2+3)π12 or π6+π4 and using the identity: tan(π6+π4)=tanπ6+tanπ41tanπ6tanπ4tan5π12=13+11(13)(1)=13+1113=1+33313=3+131=3+131×3+13+1=(3+1)2(3)2(1)2=(3)2+2(3)(1)+(1)231=3+23+12=4+232=2+3

Question 2(v)

Evaluate exactly: cos15

Solution

We rewrite 15 as (6045) and using the identity: cos(6045)=cos60cos45+sin60sin45cos15=(12)(12)+(32)(12)=122+322=1+322=2(1+3)2(22)=2+64

Question 2(vi)

Evaluate exactly: sin7π12

Solution

We rewrite 7π12 as (π4+π3) and using the identity: sin(α+β)=sinαcosβ+cosαsinβsin(π4+π3)=sinπ4cosπ3+cosπ4sinπ3sin7π12=1212+1232=122+322=2(1+3)2(22)=2+64

Go to