Question 7, Exercise 10.1

Solutions of Question 1 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Show that: cot(α+β)=cotαcotβ1cotα+cotβ

L.H.S.=cot(α+β)=1tan(α+β)=1tanα+tanβ1tanαtanβ=1tanαtanβtanα+tanβ=tanαtanβ(1tanαtanβ1)tanαtanβ(1tanβ+1tanα)=cotαcotβ1cotβ+cotα=cotαcotβ1cotα+cotβ=R.H.S.

Show that: sin(α+β)cosαcosβ=tanα+tanβ.

L.H.S.=sin(α+β)cosαcosβ=sinαcosβ+sinβcosαcosαcosβ=sinαcosβcosαcosβ+sinβcosαcosαcosβ=sinαcosα+sinβcosβ=tanα+tanβ=R.H.S.

< Question 6 Question 8 >