Question 7, Exercise 10.1
Solutions of Question 1 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 7(i)
Show that: cot(α+β)=cotαcotβ−1cotα+cotβ
Solution
L.H.S.=cot(α+β)=1tan(α+β)=1tanα+tanβ1−tanαtanβ=1−tanαtanβtanα+tanβ=tanαtanβ(1tanαtanβ−1)tanαtanβ(1tanβ+1tanα)=cotαcotβ−1cotβ+cotα=cotαcotβ−1cotα+cotβ=R.H.S.
Question 7(ii)
Show that: sin(α+β)cosαcosβ=tanα+tanβ.
Solution
L.H.S.=sin(α+β)cosαcosβ=sinαcosβ+sinβcosαcosαcosβ=sinαcosβcosαcosβ+sinβcosαcosαcosβ=sinαcosα+sinβcosβ=tanα+tanβ=R.H.S.