Question 8, Exercise 10.1
Solutions of Question 8 of Exercise 10.1 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 8(i)
Prove that: tan(π4+θ)=cosθ+sinθcosθ−sinθ
Solution
L.H.S.=tan(π4+θ)=sin(π4+θ)cos(π4+θ)=sinπ4cosθ+cosπ4sinθcosπ4cosθ−sinπ4sinθ=1√2cosθ+1√2sinθ1√2cosθ−1√2sinθ=1√2(cosθ+sinθ)1√2(cosθ−sinθ)=cosθ+sinθcosθ−sinθ=R.H.S.
Question 8(ii)
Prove that: tan(π4−θ)=1−tanθ1+tanθ
Solution
L.H.S.=tan(π4−θ)=sin(π4−θ)cos(π4−θ)=sinπ4cosθ−sinθcosπ4cosπ4cosθ+sinπ4sinθ=1√2cosθ−sinθ1√21√2cosθ+1√2sinθ=cosθ−sinθcosθ+sinθ=cosθ(1−sinθcosθ)cosθ(1+sinθcosθ)=(1−tanθ)(1+tanθ)=R.H.S.
Alternative Method
L.H.S.=tan(π4−θ)=tanπ4−tanθ1+tanπ4tanθ=1−tanθ1+1⋅tanθ∵tanπ4=1=(1−tanθ)(1+tanθ)=R.H.S.
Question 8(iii)
Prove that: tan(α+β)cot(α−β)=tan2α−tan2β1−tan2αtan2β
Solution
tan(α+β)=tanα+tanβ1−tanαtanβcot(α−β)=1+tanαtanβtanα−tanβL.H.S.=tan(α+β)cot(α−β)=tanα+tanβ1−tanαtanβ1+tanαtanβtanα−tanβ=(tanα+tanβ)(tanα−tanβ)(1+tanαtanβ)(1−tanαtanβ)=tan2α−tan2β1−tan2αtan2β=R.H.S.
Question 8(iv)
Prove that: 1−tanθtanϕ1+tanθtanϕ=cos(θ+ϕ)cos(θ−ϕ)
Solution
L.H.S.=1−tanθtanϕ1+tanθtanϕ=1−sinθcosθsinϕcosϕ1+sinθcosθsinϕcosϕ=cosθcosϕ−sinθsinϕcosθcosϕcosθcosϕ+sinθsinϕcosθcosϕ=cosθcosϕ−sinθsinϕcosθcosϕ+sinθsinϕ=cos(θ+ϕ)cos(θ−ϕ)=R.H.S.
Go to