Question 5, Exercise 10.3
Solutions of Question 5 of Exercise 10.3 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 5(i)
Prove that cos20∘cos40∘cos60∘cos80∘=116.
Solution
We know that
2cosαcosβ=cos(α+β)+cos(α−β)
L.H.S.=cos20∘cos40∘cos60∘cos80∘=cos20∘cos40∘(12)cos80∘=12cos80∘cos40∘cos20∘=14(2cos80∘cos40∘)cos20∘=14(cos(80+40)+cos(80−40))cos20∘=14(cos120∘+cos40∘)cos20∘=14(−12+cos40∘)cos20∘=−18cos20∘+14cos40∘cos20∘=−18+18(2cos40∘cos20∘)=−18cos20∘+18(cos(40+20)+cos(40−20))=−18cos20∘+18(cos60+cos20)=−18cos20∘+18(12+cos20)=−18cos20∘+116+18cos20∘=116=R.H.S.
Question 5(ii)
Prove the identity sinπ9sin2π9sinπ3sin4π9=316.
Solution
We know that
2sinαsinβ=cos(α−β)−cos(α+β)
L.H.S.=sinπ9sin2π9sinπ3sin4π9=sin180∘9sin2(180∘)9sin(180∘)3sin4(180∘)9∵π=180∘=sin20∘sin40∘sin60∘sin80∘=sin20∘sin40∘√32sin80∘=√32sin80∘sin40∘sin20∘=−√34(−2sin80∘sin40∘)sin20∘=−√34(cos(80+40)−cos(80−40))sin20∘=−√34(cos120∘−cos40∘)sin20∘=−√34(−12−cos40∘)sin20∘=√38sin20∘+√34cos40∘sin20∘=√38sin20∘+√38(2cos40∘sin20∘)=√38sin20∘+√38(sin(40+20)−sin(40−20))=√38sin20∘+√38(sin60∘−sin20∘)=√38sin20∘+√38(√32−sin20∘)=√38sin20∘+316−√38sin20∘=316=R.H.S.
Question 5(iii)
Prove the identity sin10∘sin30∘sin50∘sin70∘=116.
Solution
We know that
2sinαsinβ=cos(α−β)−cos(α+β)
L.H.S.=sin10∘sin30∘sin50∘sin70∘=sin10∘(12)sin50∘sin70∘=12sin50∘sin70∘sin10∘=−14sin50∘(−2sin70∘sin10∘)=−14sin50∘(cos(70∘+10∘)−cos(70∘−10∘))=−14sin50∘(cos80∘−cos60∘)=−14sin50∘(cos80∘−12)=−14cos80∘sin50∘+18sin50∘=−18(2cos80∘sin50∘)+18sin50∘=−18(sin(80∘+50∘)−sin(80∘−50∘))+18sin50∘=−18(sin130∘−sin30∘)+18sin50∘=−18(sin(2(90∘)−50∘)−12)+18sin50∘=−18(sin50∘−12)+18sin50∘,∴sin(2(90)−θ)=sinθ=−18sin50∘+116+18sin50∘=116=R.H.S.
Go to