Question 5, Exercise 10.3

Solutions of Question 5 of Exercise 10.3 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Prove that cos20cos40cos60cos80=116.

We know that
2cosαcosβ=cos(α+β)+cos(αβ)
L.H.S.=cos20cos40cos60cos80=cos20cos40(12)cos80=12cos80cos40cos20=14(2cos80cos40)cos20=14(cos(80+40)+cos(8040))cos20=14(cos120+cos40)cos20=14(12+cos40)cos20=18cos20+14cos40cos20=18+18(2cos40cos20)=18cos20+18(cos(40+20)+cos(4020))=18cos20+18(cos60+cos20)=18cos20+18(12+cos20)=18cos20+116+18cos20=116=R.H.S.

Prove the identity sinπ9sin2π9sinπ3sin4π9=316.

We know that
2sinαsinβ=cos(αβ)cos(α+β) L.H.S.=sinπ9sin2π9sinπ3sin4π9=sin1809sin2(180)9sin(180)3sin4(180)9π=180=sin20sin40sin60sin80=sin20sin4032sin80=32sin80sin40sin20=34(2sin80sin40)sin20=34(cos(80+40)cos(8040))sin20=34(cos120cos40)sin20=34(12cos40)sin20=38sin20+34cos40sin20=38sin20+38(2cos40sin20)=38sin20+38(sin(40+20)sin(4020))=38sin20+38(sin60sin20)=38sin20+38(32sin20)=38sin20+31638sin20=316=R.H.S.

Prove the identity sin10sin30sin50sin70=116.

We know that
2sinαsinβ=cos(αβ)cos(α+β) L.H.S.=sin10sin30sin50sin70=sin10(12)sin50sin70=12sin50sin70sin10=14sin50(2sin70sin10)=14sin50(cos(70+10)cos(7010))=14sin50(cos80cos60)=14sin50(cos8012)=14cos80sin50+18sin50=18(2cos80sin50)+18sin50=18(sin(80+50)sin(8050))+18sin50=18(sin130sin30)+18sin50=18(sin(2(90)50)12)+18sin50=18(sin5012)+18sin50,sin(2(90)θ)=sinθ=18sin50+116+18sin50=116=R.H.S.