Question 2 and 3, Review Exercise 10

Solutions of Question 2 and 3 of Review Exercise 10 of Unit 10: Trigonometric Identities of Sum and Difference of Angles. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Prove the identity 2sinθsin2θcosθ+cos3θ=tan2θtanθ.

L.H.S.=2sinθsin2θcosθ+cos3θ=2sinθsin2θcos3θ+cosθ=2sinθsin2θ2cos3θ+θ2cos3θθ2=2sinθsin2θ2cos2θcosθ=tanθtan2θ=R.H.S.

Prove the identity sin10asin4asin4a+sin2a=cos7acosa.

L.H.S.=sin10asin4asin4a+sin2a=2cos(10a+4a2)sin(10a4a2)2sin4a+2a2cos4a2a2=cos7asin3asin3acosa=cos7acosa=R.H.S.