MCQs: Ch 01 Number Systems
High quality MCQs of Chapter 01 Number System of Text Book of Algebra and Trigonometry Class XI (Mathematics FSc Part 1 or HSSC-I), Punjab Text Book Board, Lahore. The answers are given at the end of the page.
MCQs
- If ∗ is a binary operation in a set A, then for all a,b∈A
- a+b∈A
- a−b∈A
- a×b∈A
- a∗b∈A
- If z=(1,3) then z−1=
- (110,310)
- (−110,310)
- (110,−310)
- (−110,−310)
- 32+2i=
- 1−i
- 1+i
- −2i
- 3−3i4
- ¯z1+z2=
- ¯z1+¯z2
- ¯z1−¯z2
- ¯z1+z2
- z1+¯z2
- |z1+z2|
- >|z1|+|z2|
- ≤|z1|+|z2|
- ≤z1+z2
- >z1+z2
- If z1=2+i, z2=1+3i, then z1−z2=
- 1−7i
- −1+7i
- 1−2i
- 3+4i
- If z1=2+i, z2=1+3i, then −ilm(z1−z2)=
- 2i
- −2i
- 2
- 3
- Which of the following sets has closure property with respect to multiplication?
- {−1,1}
- {−1}
- {−1,0}
- {0,2}
- The multiplicative inverse of 2 is
- 0
- 1
- −2
- 12
- 42−2i=
- 1−i
- 1+i
- −2i
- i
- The simplified form of i101 is
- −1
- 1
- i
- −i
- ¯¯z= is
- ¯z
- −¯z
- z
- −z
- If z1=2+i, z2=1+3i, then iℜ(z1−z2)=
- 1
- i
- −2i
- 2
- √2 is ——- number.
- natural
- complex
- irrational
- pq form
- A rational number is a number which can be expressed in the form ——-
- pq where p,q∈z∧q≠0
- qp where p,q∈z∧q≠0
- pq where p,q∈Z∧q=0
- qp where p,q∈N∧q≠0
- R=
- Q∪N′
- Q
- Q∪Q′
- Q
- {1,2,3,...}
- set of irrational number
- set of real number
- set of rational number
- set of natural number
- The set of integers is —–
- {±1,±2,±3,...}
- {0,±1,±2,±3,...}
- {+1,+2,+3,...}
- {−1,+1,−2,+2}
- 0.333...=(≈13) is a ——– decimal.
- Terminating
- non-recurring
- recurring
- non-terminating and recurring
- 2.¯3(=2.333...) is a —– number.
- irrational
- complex
- real
- rational
- For all a,b,c∈R
(i) $a>b \wedge b>c \Rightarrow a>c(ii)a<b \wedge b<c \Rightarrow a<c$
is called —– property.- Translative
- Transitive
- Trichotomy
- Trigonometric
- For all a,b,c∈R
(i) $a>b \Rightarrow a+c>b+c(ii)a<b \Rightarrow a+c<b+c$
is called —– property.- Additional
- Advantage
- Advance
- Additive
- The number of the form x+iy, where x,y∈R is called ——- number.
- real
- conjugate
- complex
- imaginative
- Every real number is a complex number with 0 as its ——— part.
- conjugate
- complex
- imaginary
- real
- Every complex number (a,b) has a multiplicative identity equal to ———–
- (0,1)
- (0,0)
- (1,0)
- (1,1)
- Every complex number (a,b) has a additive inverse equal to ———–
- (−a,0)
- (−a,−b)
- (o,−b)
- (a,b)
- Every complex number (a,b) has a additive identity equal to ———–
- 0
- (0,1)
- (0,0)
- (1,0)
- The conjugate of a complex number (a,b) is equal to ———–
- (−a,−b)
- (−a,+b)
- (a,b)
- (a,−b)
- The modulus of a complex number (a,b) is equal to ———–
- √a+b
- √a2+b2
- √a3+b3
- √a2−b2
- The figure representing one or more complex numbers on the complex plane is called ——– diagram.
- an artistic
- an organd
- an imaginative
- an argand
- The geometrical plane on which coordinate system has been specified is called the ——– plane.
- complex
- complex conjugate
- real
- realistic
- The Cartesian product R×R where R is the set of real numbers is called the ——– plane.
- ordered
- cartesian
- classical
- an argand
- If a point A of the coordinate plane correspond to the ordered pair (a,b) then a,b are called the —— of A.
- ordinates
- abscissas
- coefficients
- coordinates
- Around ``5000 BC'' the Egyptians had a number system based on
- 5
- 50
- 10
- 100
- If n is a prime number, then \sqrt{n} is
- complex number
- rational number
- irrational number
- none of these
- A recurring decimal represents
- real number
- natural number
- rational number
- none of these
- \pi is
- rational number
- an integer
- an irrational number
- natural number
- 0 is
- positive number
- negative number
- natural number
- none of these
- A prime number can be a factor of a square only if it occurs in the square at least
- twice
- once
- thrice
- none of these
- \sqrt{-1} is
- real number
- natural number
- rational number
- imaginary number
- The multiplicative inverse of a complex number (a,b) is
- (\displaystyle{\frac{a}{a^2+b^2}},\displaystyle{\frac{b}{a^2+b^2}})
- (\displaystyle{\frac{a}{a^2+b^2}},-\displaystyle{\frac{b}{a^2+b^2}})
- (-\displaystyle{\frac{a}{a^2+b^2}},\displaystyle{\frac{b}{a^2+b^2}})
- (-\displaystyle{\frac{a}{a^2+b^2}},-\displaystyle{\frac{b}{a^2+b^2}})
- Every real number is a
- rational number
- natural number
- prime number
- complex number
- The Cartesian product of two non-empty sets A and B denoted by
- AB
- BA
- A \times B
- none of these
- Conjugate of complex number x+iy is
- -x+iy
- -x-iy
- x+y
- x-iy
- Polar form of a complex number x+iy is ……, where r=|z| and \theta = arg z
- \cos \theta+i \sin \theta
- r \cos \theta-ir \sin \theta
- r \cos \theta+ir \sin \theta
- none of these
- If z=x+iy then |\overline{z}| is
- \sqrt{x^2-y^2}
- \sqrt{x^2+y^2}
- \sqrt{2xy}
- none of these
- If -x-iy is a complex number then modulus of a complex number is
- \sqrt{x^2-y^2}
- \sqrt{x^2+y^2}
- \sqrt{2xy}
- none of these
- If z_1 and z_2 are two complex numbers then \overline{z_1+z_2} is
- z_1+z_2
- \overline{z_1}-\overline{z_2}
- \overline{z_1}+\overline{z_2}
- none of these
- If z_1 and z_2 are two complex numbers then \overline{z_1-z_2} is
- z_1+z_2
- \overline{z_1}-\overline{z_2}
- \overline{z_1}+\overline{z_2}
- none of these
- If z_1 and z_2 are two complex numbers then \overline{z_1z_2} is
- z_1z_2
- \displaystyle{\frac{z_1}{z_2}}
- \overline{z_1}\times \overline{z_2}
- none of these
- If z_1 and z_2 are two complex numbers then \overline{\displaystyle{\frac{z_1}{z_2}}} is
- \displaystyle{\frac{z_1}{z_2}}
- z_1z_2
- \displaystyle{\overline{z_2}}
- none of these
- If z_1 and z_2 are two complex numbers then |z_1z_2| is
- z_1z_2
- \displaystyle{\frac{|z_1|}{|z_2|}}
- |z_1||z_2|
- none of these
- If z and \overline{z} is a conjugate then |z \overline{z}| is equal to
- |z||\overline{z}|
- |z|^2
- \displaystyle{\frac{|z|}{\overline{|z|}}}
- none of these
- If z-3-5i then z^{-1} ———-
- -\displaystyle{\frac{3}{34}}+\displaystyle{\frac{5}{34}i}
- \displaystyle{\frac{3}{34}}-\displaystyle{\frac{5}{34}i}
- \displaystyle{\frac{3}{34}}+\displaystyle{\frac{5}{34}i}
- none of these
- If (x+iy)^2=-----
- x^2+y^2+2xyi
- x^2-y^2-2xyi
- x^2-y^2+2xyi
- none of these
- If (x-iy)^2=-----
- x^2+y^2+2xyi
- x^2-y^2-2xyi
- x^2+y^2-2xyi
- none of these
- If z^2+\overline{z}^2 is a
- Complex number
- Real number
- Both A and B
- None of these
- If (z-\overline{z})^2 is a
- Real number
- Complex number
- Both A and B
- None of these
- If (z+\overline{z})^2 is a
- Complex number
- Real number
- Both A and B
- None of these
- i can be written in th form of an ordered pair as
- (1,0)
- (1,1)
- (0,1)
- None of these
- If z=3-4i then |\overline{z}| is
- 4
- 3
- 5
- None of these
- For all \ a, b, c \in R, $a=b \wedge b=c\Rightarrow a=c$ is called
- Reflexive property
- Symmetric property
- Transitive property
- None of these
- For all a, b, c \in R, $a+c=b+c \Rightarrow a=b$ is called
- Additive property
- Cancellation property w.r.t addition
- Cancellation property w.r.t multiplication
- None of these
- For all a, b, c \in R, $ac=bc \Rightarrow a=b,c \neq 0$ is called
- Cancellation property w.r.t addition
- Cancellation property w.r.t multiplication
- Symmetric property
- None of these
- -(-a) should be read as
- Negative of negative
- Minus minus a
- Both A and B
- None of these
- If a point A of the coordinate plane correspond to the order pair (a,b) then b is called
- Abscissa
- x-coordinate
- Ordinate
- None of these
Answers
1-b, 2-b, 3-d, 4-a, 5-b, 6-b, 7-c, 8-c, 9-a, 10-d, 11-a, 12-a, 13-d, 14-c, 15-a, 16-c, 17-d, 18-b, 19-d, 20-d, 21-b, 22-b, 23-c, 24-c, 25-c, 26-b, 27-c, 28-d, 29-b, 30-d, 31-c, 32-b, 33-d, 34-a, 35-c, 36-c, 37-c, 38-d, 39-a, 40-d, 41-b, 42-d, 43-c, 44-d, 45-c, 46-b, 47-b, 48-c, 49-b, 50-c, 51-c, 52-c, 53-b, 54-a, 55-b, 56-c, 57-c, 58-a, 59-b, 60-c, 61-c, 62-c, 63-b, 64-b, 65-a, 66-c