Search

You can find the results of your search below.

Definitions: FSc Part 2 (Mathematics): PTB
44 Hits, Last modified:
===== Unit 01 (Functions and Limits) ===== * **Function:** A function is a rule or correspondence, relating to two sets in such a way that each element in the firs... e and only one element in the second set. Or \\ A function from //X// to //Y// is a rule that assigns to eac... // in //Y//. \\ e.g. $A=x^2$, that is, //A// is a function of //x//. * **Domain:** In a function $f:X\to
Definitions: Mathematics 12: PTB by Muzzammil Subhan
39 Hits, Last modified:
is given below =====Sample===== * **Polynomial Function:** A function of the form $P(x)=a_0 x^0+a_1 x^1+a_2 x^2+\ldots . .+a_{n-1} x^{n-1}+a_n x^n$ is called polynomial function where $n \in W$ and $a_0, a_1, a_2, \ldots, a_n \in R$. * **Linear Function:** A function of the form $f(x)=a x+b$ where $a,
Unit 01: Functions and Limits @fsc-part2-ptb:important-questions
5 Hits, Last modified:
2016), BSIC Rawalpendi(2017)// * Determine the function $f(x)=x^3+x$ as an even or odd function.--- // BSIC Rawalpendi(2017)// * Evaluate $\lim\limits_{\theta \t... --- // BSIC Sargodha(2016)// * Determined the function is even or odd if $f(x)=x^3+x$.--- // BSIC Sargodha(2016)// * Define continuity of function at a point. --- // BSIC Sargodha(2016)// * $f(x
Unit 02: Differentiation @fsc-part2-ptb:important-questions
4 Hits, Last modified:
nwala (2015)// * Find the extreme values of the function $f(x)=\sin x +\cos x$ occurring in the intial $[0... i}{2},\frac{\pi}{2})$ is increasing or decreasing function.--- // BSIC Rawalpandi (2017)// * If $x=\sin \t... dha(2016)// * Defined increasing and decreasing function. --- // BSIC Sargodha(2016)// * Prove that $y \... BSIC Sargodha(2017)// * What is the decreasing function. --- // BSIC Sargodha(2017)// * Find $\frac{dy}
Unit 05: Linear Inequalities and Linear Programming @fsc-part2-ptb:important-questions
1 Hits, Last modified:
FBSIC (2016)// * Find the area bounded $\cos x$ function from $x=-\frac{\pi}{2}$ to $x=\frac{\pi}{2}$.---