Question 2 & 3, Exercise 1.1
Solutions of Question 2 & 3 of Exercise 1.1 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 2
Prove that i107+i112+i122+i153=0.
Solution
L.H.S.=i107+i112+i122+i153=i⋅i106+i112+i122+i⋅i152=i.(i2)53+(i2)56+(i2)61+i.(i2)76=i.(−1)53+(−1)56+(−1)61+i.(−1)76=−i+1−1+i=0=R.H.S.
Question 3(i)
Add the complex numbers 3(1+2i),−2(1−3i).
Solution
3(1+2i)+−2(1−3i)=(3+6i)+(−2+6i)=(3−2)+(6+6)i=1+12i
Question 3(ii)
Add the complex numbers 12−23i,14−13i.
Solution
(12−23i)+(14−13i)=(12+14)+(−23−13)i=(2+14)+(−2−13)i=34−i
Question 3(iii)
Add the complex numbers (√2,1),(1,√2).
Solution
(√2,1)+(1,√2)=(√2+i)+(1+√2i)=(√2+1)+(1+√2)i