Question 9, Exercise 1.2

Solutions of Question 9 of Exercise 1.2 of Unit 01: Complex Numbers. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If z=3+2i, then verify that |z|Re(z)|z|

Given z=3+2i. Then |z|=9+4=13 and Rez=3=9.
As \begin{align} &-\sqrt{13} \leq \sqrt{9} \leq \sqrt{13}\\ \implies &-|z|\leq \operatorname{Re}\left( z \right)\leq |z|\end{align}

If z=3+2i, then verify that |z|Im(z)|z|

Given z=3+2i. Then |z|=9+4=13 and Imz=2=4.
As \begin{align} &-\sqrt{13} \leq \sqrt{4} \leq \sqrt{13}\\ \implies &-|z|\leq {\rm Im}(z) \leq |z| \end{align}