Question 3, Exercise 2.1

Solutions of Question 3 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If A=[xyz], B=[ahghbfgfc] and C=[xyz]. Verify that (AB)C=A(BC).

Given: A=[xyz], B=[ahghbfgfc] and C=[xyz].
We have to prove that (AB)C=A(BC) First, we take AB=[xyz][ahghbfgfc]=[ax+hy+gzhx+by+fzgx+fy+cz]=[ax+hy+gzhx+by+fzgx+fy+cz][xyz]=[x(ax+hy+gz)+y(hx+by+fz)+z(gx+fy+cz)]=[ax2+hxy+gxz+hxy+by2+fyz+gxz+fyz+cz2]=[ax2+2hxy+2gxz+by2+2fyz+cz2](1) Now we take BC=[ahghbfgfc][xyz]=[ax+hy+gzhx+by+fzgx+fy+cz] R.H.S=A(BC)=[xyz][ax+hy+gzhx+by+fzgx+fy+cz]=[x(ax+hy+gz)+y(hx+by+fz)+z(gx+fy+cz)]=[ax2+hxy+gxz+hxy+by2+fyz+gxz+fyz+cz2]=[ax2+2hxy+2gxz+by2+2fyz+cz2](2) From (1) and (2), we have (AB)C=A(BC).

If A=[1314], B=[213042] and C=[315210]. Verify that A(B+C)=AB+AC.

Given: A=[1314], B=[213042] and C=[315210].
Now B+C=[213042]+[315210]=[2+3113+50+24+12+0]=[502252] This gives A(B+C)=[1314][502252]=[5+60+152+65+80+202+8]A(B+C)=[111583206]...(1) Now, we take AB=[1314][213042]=[201+123+62+01+163+8]=[213321511]. and AC=[1314][315210]=[3+61+35+03+81+45+0]=[925555] Now we take AB+AC=[213321511]+[925555]=[2+913+23+52+515+5115]AB+AC=[111583206]...(2) From (1) and (2), we have A(B+C)=AB+AC.

If A=[1314], B=[213042] and C=[315210]. Verify that A(BC)=ABAC.

Given: A=[1314], B=[213042] and C=[315210].
Now BC=[213042][315210]=[231+135024120]BC=[128232] Now A(BC)=[1314][128232]=[162+98+6182+128+8]A(BC)=[711271016]...(1) Now we take AB=[1314][213042]=[2+01+123+62+01+163+8]=[213321511] Now AC=[1314][315210]=[3+61+35+03+81+45+0]=[925555] ABAC=[213321511][925555]=[29132352515511+5]ABAC=[711271016]...(2) From (1) and (2), we have A(BC)=ABBC.