Question 4, Exercise 2.1

Solutions of Question 4 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Let A=[144414441]. Show that 13A22A9I=0.

Given: A=[144414441].
Now 13A2=13[144414441][144414441]=13[1+16+164+4+164+16+44+4+1616+1+1616+4+44+16+416+4+416+16+1]=13[332424243324242433]=[118881188811] Now we take 2A=[288828882] and 9I=9[100010001]=[900090009] Now, we have \begin{align}&\dfrac{1}{3}A^2-2A-9I \\ =&\left[ 118881188811 \right]-\left[ 288828882 \right]-\left[ 900090009 \right] \\ =&\left[ 112988088088011298808808801129 \right] \\ =&\left[ 000000000 \right] \\ \implies & \dfrac{1}{3}A^2-2A-9I=0 \end{align}