Question 4, Exercise 2.1
Solutions of Question 4 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 4
Let A=[144414441]. Show that 13A2−2A−9I=0.
Solution
Given: A=[144414441].
Now
13A2=13[144414441][144414441]=13[1+16+164+4+164+16+44+4+1616+1+1616+4+44+16+416+4+416+16+1]=13[332424243324242433]=[118881188811]
Now we take
2A=[288828882]
and
9I=9[100010001]=[900090009]
Now, we have
\begin{align}&\dfrac{1}{3}A^2-2A-9I \\
=&\left[ 118881188811 \right]-\left[ 288828882 \right]-\left[ 900090009 \right] \\
=&\left[ 11−2−98−8−08−8−08−8−011−2−98−8−08−8−08−8−011−2−9 \right] \\
=&\left[ 000000000 \right] \\
\implies & \dfrac{1}{3}A^2-2A-9I=0 \end{align}
Go To