Question 7, Exercise 2.1

Solutions of Question 7 of Exercise 2.1 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If A=[101231250216] and B=[213113143121]. Then show that (A+B)t=At+Bt.

Given A=[101231250216] and B=[213113143121]. Then At=[130012121256] and Bt=[213131312141]. Now A+B=[101231250216]+[213113143121]=[1+2011+32+13+11+3215+40+32+11+261]=[312344193135] Now (A+B)t=[343141213395]...(1) Also \begin{align}A^t+B^t&=\left[ 130012121256 \right]+\left[ 213131312141 \right] \\ &=\left[ 1+23+10+3011+32+11+3211+22+15+461 \right]\\ \implies A^t+B^t&=\left[ 343141213395 \right]...(2) \end{align} From (1) and (2), we have (A+B)t=At+Bt.