Question 16 & 17, Exercise 2.2
Solutions of Questions 16 & 17 of Exercise 2.2 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 16
Let A=[3−142]. Show that |A−1|=1|A|.
Solution
Given
A=[3−142]
|A|=6+4
⇒|A|=10…(1)
A−1=1|A|AdjA
AdjA=[21−43]
A−1=110[21−43]
=[210110−410310]
A−1=[15110−25310]
|A−1|=350+250
|A−1|=110
By using (1), above expression gives,
|A−1|=1|A|
Question 17
Verify that (AB)−1=B−1A−1. If A=[2310],B=[−1123].
Solution
Given A=[2310], B=[−1123] |A|=−3 AdjA=[0−3−12] A−1=1|A|AdjA A−1=1−3[0−3−12] A−1=[0113−23] |B|=−5 AdjB=[3−1−2−1] B−1=1|B|AdjB B−1=1−5[3−1−2−1] B−1=[−35152515] B−1A−1=[−35152515][0113−23] B−1A−1=[115−1115115415] AB=[2310][−1123] =[−2+62+9−11] AB=[411−11] ⇒|AB|=4+11 ⇒|AB|=15 AdjAB=[1−1114] (AB)−1=1|AB|AdjAB (AB)−1=115[1−1114] ⇒(AB)−1=[115−1115115415] ⇒(AB)−1=B−1A−1
Go To