Question 16 & 17, Exercise 2.2

Solutions of Questions 16 & 17 of Exercise 2.2 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Let A=[3142]. Show that |A1|=1|A|.

Given A=[3142] |A|=6+4 |A|=10(1) A1=1|A|AdjA AdjA=[2143] A1=110[2143] =[210110410310] A1=[1511025310] |A1|=350+250 |A1|=110 By using (1), above expression gives,
|A1|=1|A|

Verify that (AB)1=B1A1. If A=[2310],B=[1123].

Given A=[2310], B=[1123] |A|=3 AdjA=[0312] A1=1|A|AdjA A1=13[0312] A1=[011323] |B|=5 AdjB=[3121] B1=1|B|AdjB B1=15[3121] B1=[35152515] B1A1=[35152515][011323] B1A1=[1151115115415] AB=[2310][1123] =[2+62+911] AB=[41111] |AB|=4+11 |AB|=15 AdjAB=[11114] (AB)1=1|AB|AdjAB (AB)1=115[11114] (AB)1=[1151115115415] (AB)1=B1A1