Question 2, Exercise 2.3

Solutions of Question 2 of Exercise 2.3 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Find the inverse of the matrix by using elementary row operation. [425210123]

Let A=[425210123]. Then |A|=|425210123|=4(3)+2(6)+5(4+1)=490. This gives, A is non-singular and A1 exists. Now [425210123|100010001]R[1414056123|103012001] by R1+3R3 and R2+2R3R[14140560617|103012104] by R3+R1R[141401110617|103112104]byR2+R3R[103001110049|345112568] by R36R2 and R14R2R[10300111001|345112549649849]by149R3R[100010001|349164954964917491049549649849] by R1+30R3 and R211R3 Thus we have \begin{align} A^{-1}&=[349164954964917491049549649849]\\ \implies \quad A^{-1}&=\dfrac{1}{49}[316561710568] \end{align}

Find the inverse of the matrix by using elementary row operation. [316134151]

Let A=[316134151]. Then |A|=|316134151|=3(320)+1(1+4)+6(5+3)=51+4+48=10. This gives, A is non-singular and A1 exists. Now [316134151|100010001]R[134316151|010100001] by R1R1R[1340106085|010130011] by R23R1 and R3+R1R[134021085|010121011] by R2+R3R[1340112085|01012112011] by 12R2R[1340112001|01012112475] by R38R2R[134010001|01052923475] by R212R2R[104010001|152252952923475] by R13R2R[100010001|1723121152923475] by R14R3. Thus A1=[1723121152923475]

Find the inverse of the matrix by using elementary row operation. [123020222]

Let A=[123020222]. Then |A|=|123020222|=1(4)03(4)=80. This gives, A is non-singular and A1 exists. Now [123020222|100010001]R[123020024|100010201] by R3+2R1R[101020024|101010201] by R1R3R[101010012|10101201012] by 12R2 and 12R3R[101010002|101012011212] by R3R2R[101010001|1010120121414] by 12R3R[100010001|1214340120121414] by R1R3 Thus A1=[1214340120121414]

Find the inverse of the matrix by using elementary row operation. [121013102]

Let A=[121013102]. Then |A|=|121013102|=2+61=30. This gives, A is non-singular and A1 exists. Now [121013102|100010001]R[121013023|100010101] by R3R1R[102013023|001010101]byR1+R3R[102013003|001010121] by R32R2R[102013001|001010132313] by 13R3R[100010001|234353111132313] by R12R3 and R23R3R[100010001|234353111132313] by R2. Thus A1=[234353111132313].