Question 1, Exercise 3.2
Solutions of Question 1 of Exercise 3.2 of Unit 03: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question.1(i)
If →a=3ˆi−5ˆj and →b=−2ˆi+3ˆj, then find →a+2→b.
Solution
→a+2→b=3ˆi−5ˆj+2(−2ˆi+3ˆj)=3ˆi−5ˆj−4ˆi+6ˆj=−ˆi+ˆj
Question.1(ii)
If →a=3ˆi−5ˆj and →b=−2ˆi+3ˆj, then find 3→a−2→b.
Solution
3→a−2→b=3(3ˆi−5ˆj)−2(−2ˆi+3ˆj)=9ˆi−15ˆj+4ˆi−6ˆj=13ˆi−21ˆj
Question.1(iii)
If →a=3ˆi−5ˆj and →b=−2ˆi+3ˆj, then find 2(→a−→b).
Solution
First we have, →a−→b=3ˆi−5ˆj−(−2ˆi+3ˆj)=3ˆi−5ˆj+2ˆi−3ˆj=5ˆi−8ˆj Multiply both sides by 2. We have, 2(→a−→b)=10ˆi−16ˆj
Question.1(iv)
If →a=3ˆi−5ˆj and →b=−2ˆi+3ˆj, then find |→a+→b|.
Solution
We have, →a+→b=3ˆi−5ˆj+(−2ˆi+3ˆj)=3ˆi−5ˆj−2ˆi+3ˆj=ˆi−2ˆj Taking modulus of both sides. We have, |→a+→b|=√(1)2+(−2)2=√5
Question.1(v)
If →a=3ˆi−5ˆj and →b=−2ˆi+3ˆj,then find |→a|−|→b|.
Solution
First, we find |→a|=√(3)2+(−5)2=√34…(i)|→b|=√(−2)2+(3)2=√13…(ii) Subtracting (i) from (ii). We get |ˆa|−|ˆb|=√34−√13
Question.1(vi)
If →a=3ˆi−5ˆj and →b=−2ˆi+3ˆj, then find |→a||→b|. $
Solution
Solve yourself.
Go to