Question 1, Exercise 3.2

Solutions of Question 1 of Exercise 3.2 of Unit 03: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If a=3ˆi5ˆj and b=2ˆi+3ˆj, then find a+2b.

a+2b=3ˆi5ˆj+2(2ˆi+3ˆj)=3ˆi5ˆj4ˆi+6ˆj=ˆi+ˆj

If a=3ˆi5ˆj and b=2ˆi+3ˆj, then find 3a2b.

3a2b=3(3ˆi5ˆj)2(2ˆi+3ˆj)=9ˆi15ˆj+4ˆi6ˆj=13ˆi21ˆj

If a=3ˆi5ˆj and b=2ˆi+3ˆj, then find 2(ab).

First we have, ab=3ˆi5ˆj(2ˆi+3ˆj)=3ˆi5ˆj+2ˆi3ˆj=5ˆi8ˆj Multiply both sides by 2. We have, 2(ab)=10ˆi16ˆj

If a=3ˆi5ˆj and b=2ˆi+3ˆj, then find |a+b|.

We have, a+b=3ˆi5ˆj+(2ˆi+3ˆj)=3ˆi5ˆj2ˆi+3ˆj=ˆi2ˆj Taking modulus of both sides. We have, |a+b|=(1)2+(2)2=5

If a=3ˆi5ˆj and b=2ˆi+3ˆj,then find |a||b|.

First, we find |a|=(3)2+(5)2=34(i)|b|=(2)2+(3)2=13(ii) Subtracting (i) from (ii). We get |ˆa||ˆb|=3413

If a=3ˆi5ˆj and b=2ˆi+3ˆj, then find |a||b|. $

Solve yourself.