Question 3 & 4, Exercise 3.2

Solutions of Question 3 & 4 of Exercise 3.2 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If r=ˆi9ˆj, a=ˆi+2ˆj and b=5ˆiˆj, determine the real number p and q such that r=pa+qb.

Given r=pa+qb. We put the values of r,a and b in the given equation. We get ˆi9ˆj=p(ˆi+2ˆj)+q(5ˆiˆj) $$\implies \hat{i}-9\hat{j}=(p+5q)\hat{i}+(2p-q)\hat{j}.Bycomparingthecoeffientsof$ˆi$and$ˆj$,wehave,p+5q=1…(i)2p-q=-9 …(ii)Multiply$2$by(i)andsubtract(ii)from(i).Wehave\[2p+10q=2+2p+q=+911q=11\]\implies q=1Putthevalueof$q$in(i).Wehave,p+5(1)=1 \quad \implies p=-4$$ Hence we have p=4 and q=1.

If p=2ˆiˆj and q=xˆi+3ˆj, then find the value of x such that |p+q|=5.

We calculate p+q=2ˆiˆj+xˆi+3ˆj=(2+x)ˆi+2ˆj Thus |p+q|=(2+x)2+22=x2+4x+4+4=x2+4x+8 But we are given that \begin{align}&|\vec{p}+\vec{q}|=5 \\ \implies & \sqrt{{{x}^{2}}+4x+8}=5 \\ \implies & x^2+4x+8=25\\ \implies & x^2+4x-17=0\end{align} This is quadratic equation with a=1, b=4 and c=17, so x=b±b24ac2a=4±424(1)(17)2(1)=4±842=4±2212=2±21 Thus x=2±21.