Question 11, Exercise 3.2
Solutions of Question 11 of Exercise 3.2 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 11(i)
Find the position vectors of the point of division of the line segments joining point C with position vector 5ˆj and point D with position vector 4ˆi+ˆj in the ratio 2:5 internally.
Solution
Position vector of C is →OC=5ˆj
Position vector of D is →OD=4ˆi+ˆj
Let H be the point divides the line segment ¯CD in the ratio 2:5internally,
then by ratio theorem, we have position vector H is: \begin{align}\overrightarrow{OH}&=\dfrac{5\overrightarrow{OC}+2\overrightarrow{OD}}{5+2}\\ &=\dfrac{5(5\hat{j})+2(4\hat{i}+\hat{j})}{7}\\ &=\dfrac{1}{7}(8\hat{i}+27\hat{j})\\ \implies \overrightarrow{OH}&=\dfrac{8}{7}\hat{i}+\dfrac{27}{7}\hat{j}\end{align}
Question 11(ii)
Find the position vectors of the point of division of the line segments joining point E with position vector 2ˆi−3ˆj and point F with position vector 3ˆi+2ˆj in the ratio 4:3 externally.
Solution
Position vector of E is →OE=2ˆi−3ˆj
Position vector of F is →OF=3ˆi+2ˆj
Let K be the point with position vector →OK that divides the line segment ¯EF externally in the ratio 4:3, then by ratio theorem, \begin{align}\overrightarrow{OK}&=\dfrac{3\overrightarrow{OE}-4\overrightarrow{OF}}{3-4}\\ &=-[3(2\hat{i}-3\hat{j})-4(3\hat{i}+2\hat{j})]\\ &=-(6-12)\hat{i}-(-9-8)\hat{j}\\ \implies \overrightarrow{OK}&=6\hat{i}+17\hat{j}\end{align}
Go To