Question 1, Exercise 3.3
Solutions of Question 1 of Exercise 3.3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 1(i)
If →a=3ˆi+4ˆj−ˆk, →b=ˆi−ˆj+3ˆk and →c=2ˆi+ˆj−5ˆk then find →a⋅→b
Solution
→a⋅→b=(3ˆi+4ˆj−ˆk)⋅(ˆi−ˆj+3ˆk)⇒=(3×1)+(4×−1)+(−1×3)=3−4−3=−4.
Question(ii)
If →a=3ˆi+4ˆj−ˆk, →b=ˆi−ˆj+3ˆk and →c=2ˆi+ˆj−5ˆk then find →a⋅→c.
Solution
→a⋅→c=(3ˆi+4ˆj−ˆk)⋅(2ˆi+ˆj−5ˆk)⇒→a⋅→c=(3×2)+(4×1)+(−1×−5)=6+4+5=15.
Question(iii)
If →a=3ˆi+4ˆj−ˆk, →b=ˆi−ˆj+3ˆk and →c=2ˆi+ˆj−5ˆk then find →a⋅(→b+→c)
Solution
→b+→c=(ˆi−ˆj+3ˆk)+(2i+ˆj−5ˆk)⇒→b+→c=3ˆi−2ˆk Taking dot product with →a →a⋅(→b+→c)=(3ˆi+4ˆj−ˆk)⋅(3ˆi−2ˆk)⇒→a⋅(→b+→c)=3.3+4.0+−1.−2⇒→a⋅(→b+→c)=11.
Question(iii)
If →a=3ˆi+4ˆj−ˆk, →b=ˆi−ˆj+3ˆk and →c=2ˆi+ˆj−5ˆk then find (→a−→b)⋅→c
Solution
→a−→b=3ˆi+4ˆj−ˆk−(ˆi−ˆj+3ˆk)⇒→a−→b=2ˆi+5ˆj−4ˆk taking dot product with →c (→a−→b)⋅→c=(2ˆi+5ˆj−4ˆk)⋅(2ˆi+ˆj−5ˆk)⇒=2⋅2+5⋅1+−4⋅−5⇒(→a−→b)⋅→c=−11.
Go to