Question 1, Exercise 3.3

Solutions of Question 1 of Exercise 3.3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

If a=3ˆi+4ˆjˆk, b=ˆiˆj+3ˆk and c=2ˆi+ˆj5ˆk then find ab

ab=(3ˆi+4ˆjˆk)(ˆiˆj+3ˆk)=(3×1)+(4×1)+(1×3)=343=4.

If a=3ˆi+4ˆjˆk, b=ˆiˆj+3ˆk and c=2ˆi+ˆj5ˆk then find ac.

ac=(3ˆi+4ˆjˆk)(2ˆi+ˆj5ˆk)ac=(3×2)+(4×1)+(1×5)=6+4+5=15.

If a=3ˆi+4ˆjˆk, b=ˆiˆj+3ˆk and c=2ˆi+ˆj5ˆk then find a(b+c)

b+c=(ˆiˆj+3ˆk)+(2i+ˆj5ˆk)b+c=3ˆi2ˆk Taking dot product with a a(b+c)=(3ˆi+4ˆjˆk)(3ˆi2ˆk)a(b+c)=3.3+4.0+1.2a(b+c)=11.

If a=3ˆi+4ˆjˆk, b=ˆiˆj+3ˆk and c=2ˆi+ˆj5ˆk then find (ab)c

ab=3ˆi+4ˆjˆk(ˆiˆj+3ˆk)ab=2ˆi+5ˆj4ˆk taking dot product with c (ab)c=(2ˆi+5ˆj4ˆk)(2ˆi+ˆj5ˆk)=22+51+45(ab)c=11.