Question 2 and 3 Exercise 3.3

Solutions of Question 2 and 3 of Exercise 3.3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Write a unit vector in the direction of the sum of the vectors: a=2ˆi+2ˆj5ˆk,b=2ˆi+ˆj7ˆk.

We first find the sum a+b=(2ˆi+2ˆj5ˆk)+(2ˆi+ˆj7ˆk)=4ˆi+3ˆj12ˆk|a+b|=(4)2+(3)2+(12)2=16+9+144|a+b|=169=13 Now let say ˆc be the unit vector x the sum of a and b then ˆc=a+b|a+b|=4ˆi+3ˆj12k13=113(4ˆi+3ˆj12ˆk)=413ˆi+313ˆj1213ˆk=113(4ˆi+3ˆj12ˆk)

Find the angles between the pairs of vectors: ˆiˆj+ˆk,ˆi+ˆj+2ˆk

Let a=ˆiˆj+ˆk and b=ˆi+ˆj+2ˆk. Let θ be the angle hetween a and b  then cosθ=ab|a||b|(1)ab=(ˆiˆj+ˆk)(ˆi+ˆj+2ˆk)ab=1(1)+(1)(1)+1(2)ab=11+2=0 a and b are orthogonal.
θ=90.

Find the angles between the pairs of vectors: 3ˆi+4ˆj,2ˆj5ˆk

Let a=3ˆi+4ˆj and b=2ˆj5ˆk. Let θ be the angle between a and b  then cosθ=ab|a||b|(1)ab=(3ˆi+4ˆj)(2ˆj5ˆk:ab=3(0)+(4)(2)+0(5)ab=8 Also |a|=(3)2+(4)2=9+19|a|=25=5 and |b|=(2)2+(5)2|b|=29 Now putting all these in (1) cosθ=8529θ=cos1(8529)θ=cos1(0.2971)=72.72=73(approximately)

Find the angles between the pairs of vectors: 2ˆi3ˆk,ˆi+ˆj+ˆk

Let a=2ˆi3ˆk and b=ˆi+ˆj+ˆk.

Let θ be the angle between a and b then cosθ=ab|a||b|. ab=(2ˆi3ˆk)(ˆi+ˆj+ˆk)ab=2(1)+(0)(1)+(3)(1)ab=1  Also |a|=(2)2+(3)2|a|=4+9=13. and |b|=(1)2+(112+(1)2|b|=3 Now putting all these in (1) cosθ=1313θ=cos1(1313)θ=cos1(0.1601)=99(approximately)