Question 2 and 3 Exercise 3.3
Solutions of Question 2 and 3 of Exercise 3.3 of Unit 03: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 2
Write a unit vector in the direction of the sum of the vectors: →a=2ˆi+2ˆj−5ˆk,→b=2ˆi+ˆj−7ˆk.
Solution
We first find the sum →a+→b=(2ˆi+2ˆj−5ˆk)+(2ˆi+ˆj−7ˆk)⇒=4ˆi+3ˆj−12ˆk⇒|→a+→b|=√(4)2+(3)2+(−12)2⇒=√16+9+144⇒|→a+→b|=√169=13 Now let say ˆc be the unit vector x the sum of →a and →b then ˆc=→a+→b|→a+→b|=4ˆi+3ˆj−12k13⇒=113(4ˆi+3ˆj−12ˆk)⇒=413ˆi+313ˆj−1213ˆk⇒=113(4ˆi+3ˆj−12ˆk)
Question 3(i)
Find the angles between the pairs of vectors: ˆi−ˆj+ˆk,−ˆi+ˆj+2ˆk
Solution
Let →a=ˆi−ˆj+ˆk and →b=−ˆi+ˆj+2ˆk.
Let θ be the angle hetween →a and →b
then cosθ=→a⋅→b|→a||→b|………(1)→a⋅→b=(ˆi−ˆj+ˆk)⋅(−ˆi+ˆj+2ˆk)⇒→a⋅→b=1(⋅1)+(−1)(1)+1(2)⇒→a⋅→b=−1−1+2=0
→a and →b are orthogonal.
⇒θ=90′′.
Question 3(ii)
Find the angles between the pairs of vectors: 3ˆi+4ˆj,2ˆj−5ˆk
Solution
Let →a=3ˆi+4ˆj and →b=2ˆj−5ˆk. Let θ be the angle between →a and →b then cosθ=→a⋅→b|→a||→b|…………(1)→a⋅→b=(3ˆi+4ˆj)⋅(2ˆj−5ˆk:⇒→a⋅→b=3(0)+(4)(2)+0(−5)⇒→a⋅→b=8 Also |→a|=√(3)2+(4)2=√9+19⇒|→a|=√25=5 and |→b|=√(2)2+(−5)2⇒|→b|=√29 Now putting all these in (1) cosθ=85⋅√29⇒θ=cos−1(85⋅√29)⇒θ=cos1(0.2971)=72.72∘=73∘(approximately)
Question 3(iii)
Find the angles between the pairs of vectors: 2ˆi−3ˆk,ˆi+ˆj+ˆk
Solution
Let →a=2ˆi−3ˆk and →b=ˆi+ˆj+ˆk.
Let θ be the angle between →a and →b then cosθ=→a⋅→b|→a||→b|. →a⋅→b=(2ˆi−3ˆk)⋅(ˆi+ˆj+ˆk)⇒→a⋅→b=2(1)+(0)(1)+(−3)(1)⇒→a⋅→b=−1 Also |→a|=√(2)2+(−3)2⇒|→a|=√4+9=√13. and |→b|=√(1)2+(112+(1)2⇒|→b|=√3 Now putting all these in (1) cosθ=−1√3⋅√13⇒θ=cos−1(−1√3⋅√13)⇒θ=cos1(−0.1601)=99∘(approximately)
Go To